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Stock assessment models overstate sustainability
of the world’s fisheries
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Effective fisheries management requires accurate estimates of stock biomass and trends; yet, assumptions
in stock assessment models generate high levels of uncertainty and error. For 230 fisheries worldwide,
we contrasted stock biomass estimates at the time of assessment with updated hindcast estimates modeled
for the same year in later assessments to evaluate systematic over- or underestimation. For stocks that were
overfished, low value, or located in regions with rising temperatures, historical biomass estimates were
generally overstated compared with updated assessments. Moreover, rising trends reported for overfished
stocks were often inaccurate. With consideration of bias identified retrospectively, 85% more stocks
than currently recognized have likely collapsed below 10% of maximum historical biomass. The high
uncertainty and bias in modeled stock estimates warrants much greater precaution by managers.

G
lobal assessments of the state of fisheries
stocks consistently report that poorly
managed fish populations are declin-
ing (1). Such declines contrast claims of
widespread recovery for many highly

managed stocks (2), including in the Food and
Agriculture Organization of the United Na-
tions (FAO)’s summary of the state of world
fisheries (1). Nevertheless, conclusions that in-
tensively managed stocks are generally im-
proving depend on how information from
different stocks is averaged to derive a global
trend (3). Moreover, interpretation of stock
trends is complicated by many factors influenc-
ing catch rates—e.g., the continuously improv-
ing technological efficiency of fishing fleets
(4) can increase catch per unit effort even as
stocks decline.
Best practice methods for assessing fisheries

involve complex models integrating past catch
data with biological and other information (5).
Complex stock models can include more than
40 different parameters and settings related to
fish life history (e.g., natural mortality, length
and age at maturity, and growth rate), catch
(e.g., landings, gear selectivity, and discards),
effort (e.g., days fished and number of hooks),
and management controls (e.g., fleet alloca-
tions and allowable catch) (5). The many es-
timated parameters and settings can lead to
model overfitting, whereby uncertainty accu-
mulates with each additional estimate. Accu-
racy of simpler stock assessment approaches
is typically evaluated relative to complex mod-
els (6); however, the accuracy of complex stock
models remains unknown because the true
fish biomass is not directly observed.

In the absence of accurate biomass data, a
retrospective analysis of differences in esti-
mated stock biomass reported over time can
indicate the magnitude of uncertainty and
test for systematic bias. Previous retrospective
analyses have generally considered variation
in biomass estimates where modeled values
for the same year were compared between
stock assessments, with large variation noted
(7–9). By contrast, we relate past stock assess-
ments to the most recent assessment. Our
reasoning is that modeled output of the most
recent assessment should, on average, be the
most accurate because estimates are hindcast
using the longest time series and with the
most knowledge for defining model structure.
Our interest is primarily directed at whether
systematic bias exists between past and most
recent assessment estimates and how that
bias varies with stock status. Bias matters be-
cause overfished stocks may not be identified
for recovery actions if stock size is overesti-
mated, or recovery actions may have unnec-
essary economic consequences if stock size is
underestimated.
Our analysis considers depletion metrics that

relate current stock biomass, B, to unfished
biomass, B0, because of their central role in
fisheries management. Depletion metrics are
important in rebuilding stocks through re-
duced quotas or fishery closures when stocks
decline below particular limit reference points
(10), which vary between jurisdictions and
stocks but are often around B/B0 = 0.2 (11).
Overfished can be defined using a range of
benchmarks related to stock modeling as-
sumptions, estimated depletion, and estimated
fishing mortality (12). These include B/B0 = 0.5,
the point ofmaximumsustainable yield accord-
ing to classic stock models (13). To simplify
discussion of depletion effects, we use B/B0 <
0.4 to define overfished stocks, given that both
catch and economic returns generally decline
below 0.4 (14) and ecosystem impacts are larger

than necessary [including reduced trophic role
of target species (15)]. We distinguish col-
lapsed stocks as the subset of overfished stocks
with B/B0 < 0.1 (16). An intermediate bench-
mark is the point where recruitment impair-
ment commences, which has most frequently
been characterized as B/B0 = 0.2 (17, 18). Al-
though subjective, the choice of sustainabil-
ity threshold had little impact on our study
conclusions because our focus was not on es-
timating the proportion of overfished stocks
but whether that proportion systematically
changes between current and hindcast assess-
ments. Notably, the set of stocks analyzed in
this work includes stocks that are dispropor-
tionately well documented and managed and
thus comprises a nonrepresentative subset of
the stock assessment universe.
Because modeled B0 was unavailable for

most fisheries and is highly sensitive to input
parameters, we approximatedB0 using spawn-
ing stock biomass in the historical year of
maximum stock size (Bmax) and thereby esti-
mated depletion as B/Bmax (12). For the 38 stocks
with estimates of B0 provided in the RAM Leg-
acy Stock Assessment database,Bmax tended to
be similar to B0 [coefficient of determination
(R2) = 0.97], albeit slightly higher on average
(by 5.8%; fig. S1).

Depletion of fish stocks

Our retrospective analysis of spawning stock
biomass (B; the combined biomass in tonnes
of all mature females) included 230 stocks
with 986 assessments that encompassed 128
species or species complexes, including most
of the world’s largest fisheries (table S1). An-
nual modeled estimates of B extended over
an average of 47 years in time series. We com-
pared 756 values of B reported in the final
year of older stock assessments with the equiv-
alent estimates of B (i.e., in the same year)
provided as hindcast values in the most recent
assessment.
Estimates of stock biomass in individual

hindcast time series changed greatly from one
year to the next (mean 1.12× change between
successive years; maximum 2.10× change for
Barents Sea capelin). Such instability unlikely
reflects real-world population oscillations, given
that most stocks are made up of multiple year
classes that persist from year to year [e.g.,
>3 years for capelin (19)]. Modeled estimates of
stock biomass for assessments released in dif-
ferent years showed even greater variability.
For example, Pacific cod in the Gulf of Alaska
varied by 1.49× in estimates of B for the same
year between consecutive assessments (Fig. 1).
This variability greatly exceeded uncertainty
intervals described for individual stock mod-
els. Pacific cod variability was similar to mean
change between assessments averaged across
all 230 stocks (1.40×) and is thus typical of the
variability in stocks considered in this work.
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Such marked differences suggest that stock
biomass estimates for any year were often far
from the (unknown) true value.
Mean depletion in the most recent assess-

ment averaged across stocks declined from an
average of 0.50 ×Bmax in 1980 to 0.35 ×Bmax in
2006 and then rose to 0.47 × Bmax in 2017 (Fig.
2A, black curve), which suggests generalized
stock recovery. The recent overall rise was
driven by sustainable stocks (i.e., B/Bmax in
final year of most recent assessment > 0.4; Fig.
2B), whereas overfished stocks remained low
in recent years on average (Fig. 2C). In general,
older stock assessments were increasingly op-
timistic relative to the most recent assessment
the further back in time they were produced
(Fig. 2). Assessments released >8 years earlier
than themost recent assessment showed a rise
inmean B/Bmax across stocks to 0.48 × Bmax by
2007—30% greater than the value of 0.35 ×
Bmax for the same year indicated by most re-
cent assessments (Fig. 2A).
B/Bmax plots for overfished stocks (Fig. 2C)

generally featured upward slopes in the final
2 years of older assessments—suggesting im-
proving stock size—that were no longer evi-
dent in the most recent assessments (Fig. 2C).
Such phantom recoveries progressed across
assessments as updated stock assessments
were released.

Bias in old assessments

Hindcast stock biomass estimates for the 230
stocks spanned different year periods, with
some stocks not assessed after 2010 (fig. S2).
Consequently, differences in mean B/Bmax for
different sets of stocks may have influenced
the general downward revisions in B/Bmax from
older to most recent assessments (Fig. 2). We
considered this potential misrepresentation by
standardizing biomasswithin stocks as the ratio
relating stock biomass in the year of stock as-
sessment to most recent assessment value for
the same year before calculating the overall
mean (fig. S3, A and B). Large downward re-
visions in stock biomass in later assessments,
and a consistent tendency for phantom recov-
eries, typified overfished stocks (fig. S3B).
We investigated possible reasons for stock

biomass downsizing in updated assessments
by calculating a log response ratio to contrast
old versus the most recent assessment values
(D; stock biomass from the final year reported
in older assessments relative to updated bio-
mass for the same year in the most recent
assessment; Fig. 1) for B/Bmax, B, and Bmax.
Most older stock assessments overestimated
B/Bmax relative to later hindcast estimates
for that year. A total of 152 of the 230 stocks
(66%) had positive assessment bias, indicat-
ing that the full extent of biomass depletion
was not known when management actions
were considered. Biomass depletion estimates
were negatively biased for 77 stocks (33%), in

which casemanagement decisionswould have
been precautionary. Calculated as a back-
transformed geometric mean across all stocks,
B/Bmax was overestimated by an average of 11.5%
(±2.3% SE) at the time of stock assessment re-
lease. Parsing ofB/Bmax into its two components
indicated that positive bias in estimates ofB (DB;
9.8 ± 3.3% SE) largely contributed to positive
bias in B/Bmax, whereas bias in Bmax (DBmax;
−1.6 ± 2.6% SE) had little effect.
Bias was extremely large for some stocks.

Estimates of B/Bmax in old assessments were
more than 1.5× the most recent assessment
values for 17% of assessments and more than
2× the most recent assessment values for
8.5% of assessments. Half of older estimates
of B/Bmax lay outside the range of 0.90× and

1.32× of the most recent estimate hindcast
for the same year.
Clear patterns of overestimation of B/Bmax

were also observed for overfished stocks when
bias in estimates at the time of stock assess-
ment release was plotted against the number
of years to most recent assessment (fig. S3D).
More so than for sustainable stocks (fig. S3C),
DB/Bmax in the final assessment year for over-
fished stocks greatly exceeded the bias in earlier
years (fig. S3D). In other words, overestimation
bias was primarily a feature of depletion esti-
mates for the year when the assessment was
released and management decisions made
rather than for earlier years in the modeled
time series. This finding was not dependent
on applying the criterion B/Bmax < 0.4 to assess

Fig. 1. Hindcast trends in stock biomass and depletion for Pacific cod (Gulf of Alaska). Stock models
published in different years provided varying estimates of historical trends in stock biomass (B; tonnes)
(37). Each colored curve connects best-fit modeled hindcast values. (A) Bias in spawning stock biomass.
Orange arrows show the magnitude of bias in B (DB) calculated as the log ratio of B in the final year
for the stock in an older assessment (2014 example) relative to the estimate of B in the same year as
hindcast in the most recent assessment (MRA) (thick black curve). Shading indicates uncertainty (±1 SD)
associated with modeled output in the most recent assessment. (B) Bias in stock depletion (DB/Bmax).
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overfishing in the final assessment year. When
overfished stocks were alternatively identified
5 years before the final stock assessment year,
results changed little (fig. S4).
The existence of acute bias in the final year

of assessments for overfished stocks led to
positive bias in the final year of their modeled
stock trends (fig. S3, E and F)—i.e., exagger-

ated stock recovery. For example, a stock tra-
jectory that was truly flat would appear as a
rising trend in the modeled time series—a
phantom recovery—because B/Bmax estimates
were inflated in the most recent year but not
early years. Managers of overfished stocks would
thus be twice mistaken—first, by concluding
that a stock is less overfished than reality and

second, because an inaccurate trajectory sug-
gesting stock recovery may signal little need for
strong regulatory controls (20). The existence of
phantom recoveries suggests that many highly
managed stocks worldwide could be locked
into an overfished state, regardless of an ap-
parent rise in biomass in recent assessments.
We assessed the contributions of seven factors

that potentially influenced biases in biomass
estimates (DB/Bmax, DB, and DBmax) using gen-
eralized linear mixed-effects models (GLMMs)
(Fig. 3): (i) Depletion. Depleted stocks may be
more biased owing to fewer data for modeling
or sociopolitical pressures to take nonconser-
vative management options. (ii) Assessment
age. Fewer years between old stock assess-
ment and most recent assessment may reduce
bias through greater overlap in time series
or more similar model structure. (iii) Value.
Fisheries with lower stock value may have
more bias because fewmanagement resources
are devoted to model development and data
collection. (iv) Sea surface temperature (SST)
trend. Rising regional SSTs may lead to greater
bias through unpredictable interactions and
ecosystem changes. (v) Mean SST. Tropical
fisheries may have higher bias because pre-
diction is increasingly difficult with high spe-
cies richness, complex food webs, short-lived
populations, or little fisheries data. (vi) Dura-
tion. Longer time series may have better cal-
ibratedmodels. (vii) Clupeoids.High interannual
variability driven by climate cycles may in-
crease unpredictability for small pelagic clu-
peoids (e.g., sardines and pilchards).
After initial testing of interaction strength be-

tween all factors and depletion (10), we included
two interaction terms in the GLMMs—(i) assess-
ment age×depletion and (ii) value ×depletion—
because these two parameters alone provided
an improved model fit [lowest Watanabe-
Akaike information criteria statistic (21); table
S2]. We also tested whether GLMM results
were consistent through the long term by de-
leting data for years after 2010, reassigning
most recent assessments, and then rerunning
models for DB/Bmax.
Biases in depletion estimates (DB/Bmax) were

significantly affected by the assessment age ×
depletion interaction and also by the value ×
depletion interaction, SST trend, and duration
[95% credible intervals (CIs) do not overlap 0;
Fig. 3A]. The components DB and DBmax were
influenced by the age × depletion interaction,
depletion, age, and value covariates in the same
direction as DB/Bmax, whereas other covariates
displayed varying responses. Both DB and
DBmax showed significant assessment age ×
depletion interactions (Fig. 3).
The value × depletion interaction for DB/Bmax

was driven by a tendency for bias among col-
lapsed stocks to increase with stock value,
whereas DB/Bmax declined with value in sus-
tainable stocks (fig. S5). Overfished high-value

Fig. 2. Variation through time in estimates of mean depletion (B/Bmax) between 1980 and 2018.
(A to C) Variation is averaged for all 230 stocks (A), 137 sustainable stocks (Bmax > 0.4) (B), and 93 overfished
stocks (Bmax < 0.4) (C). Curves depict the most recent assessment (black line) and older assessments
completed 1 to 3 years, 4 to 8 years, or >8 years before the most recent assessment. Values for years with <10
stock assessments have been excluded because of high uncertainty. Sample sizes are shown in fig. S2. Arrows
indicate phantom recoveries.
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stocks showed less bias in both DB and DBmax

compared with low-value stocks, indicating
greater consistency in assessments for stocks
with high value (fig. S5). Consistent with ex-
pectations, stock assessments calibrated with
long time series (duration) had relatively low
bias (DB/Bmax), and assessments for stocks in
rapidly warming locations (SST trend) had
relatively high bias (Fig. 3A).
The assessment age × depletion interaction

exhibited the strongest andmost robust effect,
as underscored by a significant (P < 0.05) out-
come in the GLMM consistency test where data
after 2010 were deleted (fig. S6). By contrast,
other factors, although generally having sim-

ilar effect sizes as with the full dataset, were no
longer significant after exclusion of years after
2010 owing to lower statistical power (fig. S6).
The effect of assessment age (i.e., gap in years
between stock assessment and most recent as-
sessment) onDB/Bmax diverged sharply between
sustainable and overfished stocks (Fig. 4A),
reflecting variability in DB (Fig. 4B) rather than
DBmax (Fig. 4C). With 14 years of hindsight,
estimates of DB/Bmax had halved for collapsed
stocks (i.e., 2× bias) while increasing by 23%
(0.81× bias) for sustainable stocks (Fig. 4A).
Given the possibility that the strong assess-

ment age × depletion effect may have been
driven by improvements in the stock assess-

ment approaches in recent calendar years
leading to reduced bias, we reran GLMMs sub-
stituting year of most recent assessment for
assessment age. We found no evidence of less
bias in recent assessments for either over-
fished or sustainable stocks (fig. S7).
The extent to which bias varies with different

stock modeling approaches was not evaluated
in this work but is an important next step for
reducing systematic errors. For example, the
widely used Stock Synthesis assessment frame-
work (5) allows for flexible modeling structure
and parameterization but can yield optimistic
assumptions about stock productivity and re-
covery potential versus empirical evidence (12).

Fig. 3. Varying influences of covariates on bias in stock model output. Coefficient estimates were calculated from GLMMs relating bias D to seven covariates
plus the interactions assessment age × depletion and value × depletion. (A) DB/Bmax. (B) DB. (C) DBmax. Error bars indicate 50%, 80%, and 95% CIs and are
highlighted black when the 95% CIs do not overlap 0. Effect sizes were scaled by the SD of values. Negative effect sizes indicate that bias (historical overestimation of
stock biomass) is less at high covariate values.

Fig. 4. Depletion bias rapidly increases with assessment age for overfished stocks. (A to C) Generalized log-linear mixed model output depicts relationships
between bias and assessment age, with other covariates set to 0 for DB/Bmax (A), DB (B), and DBmax (C). Separate curves are modeled for sustainable stocks
with no depletion (B/Bmax = 1; blue), stocks at the overfished threshold (B/Bmax = 0.4; black), and collapsed threshold (B/Bmax = 0.1; red). Shaded areas indicate 95%
CIs. Positive values for bias indicate that older assessments overestimated stock size.
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Future research priorities include examining
how different assessment model types and
inputs influence the magnitude of bias and
uncertainty (12), the reliability of common
model parameter inputs, and differences in bias
between time series calibrated by standard-
ized scientific survey versus fishery catch-per-
unit-effort, which can be biased (22). Another
important research avenue is the role of ex-
ternal factors that inhibit the rebuilding of
highly overfished stocks, which can show little
recovery even after fishing is greatly reduced
(23, 24), including reproductive failure when
abundance drops below critical Allee thresholds
(25). Such potential consequences of overfishing
highlight the need for precaution to avoid reach-
ing this state.

Consequences of observed bias for global
assessments of fisheries sustainability

To illustrate consequences of observed bias for
global fisheries status assessments, we adjusted
B/Bmax values for all 230 stocks using individual
stockbias estimates to represent probable bias in

each most recent assessment. Calculations were
standardized using a retrospective analysis look-
ing back from 10 years in the future because as-
sessment age was an important predictor of bias.
WeassumedthatDB/Bmax remained unchanged
in 10 years’ time—an assumption supported by
the stable relationship between bias andmost
recent assessment calendar year (fig. S7). By
comparing current status from most recent as-
sessments to status corrected for bias in 10 years’
time, we estimate 1.29×more investigated stocks
(53 versus 41) than presently indicated have
passed below the B/Bmax limit reference point
of 0.2 [suggesting impaired recruitment (18)].
Moreover, 1.85× more assessed stocks (24 ver-
sus 13) have collapsed (B/Bmax < 0.1) than cur-
rently recognized. Such distortions potentially
affect conclusions from meta-analyses reliant
on global assessment databases, including overly
optimistic predictions for how well stock status
can be managed. Meta-analyses of stock assess-
ment databases have been used, for example, to
infer the global status of fisheries (16), the role of
management in stock recovery (2), the impact of

climate change on fisheries production (26), and
future scenario exploration for fisheries (27).

Dealing with uncertainty

Uncertainty associated with stock assessments
includes interrelated process, observation, model,
and estimation uncertainties (28). These uncer-
tainties led to high interannual variability and
consistent bias evident in our analyses, raising
doubts about the accuracy of integrated stock
assessmentmodels regardless of sophistication.
Bias erred toward stable stocks, with overesti-
mation of biomass for overfished stocks and
underestimation for sustainable stocks (Fig. 4).
The tendency for bias to inaccurately imply

stable stock trajectories for both increasing and
declining stocks suggests systematic technical
issuesor confirmationbias (29),whereoverfitted
models align withmodeler’s expectations. Some
modeled parameters are particularly relevant in
this context, including natural mortality and
the steepness of the stock-recruitment relation-
ship (i.e., the extent that future stock replen-
ishment depends on spawner biomass). Early
investigations optimistically suggested that
maximumproductivity could be assumedwith
biomass reduced to only 0.2 B/B0 (30). A sub-
sequent meta-analysis found little association
between recruitment and spawning biomass
(31). A more recent study indicated that stock
productivity declines when B/B0 falls below
0.5 (12). Subjective decisions on such highly un-
certain parameters provide a possible pathway
for systematic bias and management failures
(32, 33). In particular, poor parameter choices
candelay recognition of collapsing stocks, which
become obvious only with subsequent data and
hindsight (34).
Although some stock assessment reports can-

didly describe parameter adjustments needed
to avoid projections of stock collapse (35),
parameter tweaking is rarely well communi-
cated tomanagers and policy-makers. Modeled
output presented in reports typically depicts
uncertainty generated through randomization
routines included in model algorithms (Fig.
1A). By contrast, the much higher uncertainty
contributed by model adjustment, choice of
model structure (including spatial dynamics),
input parameters, and inadequacy of input
data is frequently overlooked. When older
stock assessment trends (Fig. 1) are presented
to decision-makers, rather than the most re-
cent assessment alone, the scale of uncertain-
ty is more obvious. Nevertheless, recognition
of uncertainty by managers is not enough un-
less it also elicits precaution, such as reducing
catch quotas to allow for assessment errors (8).
We concur with the many who argue that

overexploitation can be avoided. We highlight
10 conditions which, combined, can fundamen-
tally improve fisheries stock assessment mod-
eling and policy interventions that secure the
long-term sustainability of fisheries (Fig. 5).

Fig. 5. Major conditions
needed to improve the
accuracy of fisheries stock
assessment models and
fisheries sustainability.
(i) Precaution. Effective fish-
eries management requires
appropriate precaution
because of high uncertainty
in stock assessments (8, 38).
Pressure to select the most
optimistic scenario causes
ratcheting, where stocks
incrementally decline each
time that a more pessimistic
view was warranted. (ii) Con-
sideration of bias. Modeling
approaches require careful
consideration to avoid possi-
ble cognitive biases. Simplification can reduce opaqueness, assisting decision-making. (iii) Multiple
scenarios. Ensemble techniques that compare outputs of multiple models are generally needed,
including an independent red team assessment where pessimistic scenarios are encouraged (20).
(iv) Retrospective analyses. Assessments for overfished stocks should consider biases evident through
retrospective analysis, given that systematic error likely persists. (v) Consideration of changing climate.
Sea temperatures now fall above historical extremes in many regions, leading to rapid population
changes among species (39). (vi) Independent parameter selection. Stock assessments should be
conducted in a framework that uses the best scientific information and appropriately estimates
uncertainty, such as a Bayesian framework. (vii) Open data. Online deposition of annotated modeling
code and data allows independent validation and increases public confidence. (viii) Full consideration of
uncertainty. All sources of stock assessment uncertainty should be explicitly described, including
parameter selection, with sufficient detail for users to assess whether variation exceeds bounds fit for
purpose. (ix) Fishery-independent surveys. Appropriately designed field surveys, particularly assessments
of changing fish biomass, are necessary to test assumptions and to train and validate models. Data
obtained during commercial fishery operations are generally insufficient because of biases associated
with catch hyperstability (22), survey location, and improving technology. (x) Marine reserve surveys.
Analysis of independent data from effective no-fishing reserves, where environmental change occurs in
the absence of fishing, provides invaluable context for distinguishing fishing mortality from impacts
of changing climate and pollution, for estimating benchmarks for unfished spawning stock biomass,
and for greater assurance that adequate spawning stock persists long-term (38, 40).
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Many of these conditions already apply in par-
ticular regions—the challenge is to ensure that
all conditions are routinely considered in all
regions, including appropriate precaution for
fisheries where data and resource limitations
prevent even the most basic stock assessments.
Although inadequate precaution can generate
short-term catch benefits, it erodes long-term
societal interests through loss of species with
immense economic, environmental, cultural, re-
creational, and spiritual value. Considering just
the economic value, an inability to reverse de-
cline when fish numbers are decreasing ulti-
mately has far-reaching negative impacts on
the fisheries workforce, ecosystems and their
stability, and the world’s capacity to provide
protein to an increasing population (36).
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