ANNUAL STOCK ASSESSMENT AND FISHERY EVALUATION REPORT: MARIANA ARCHIPELAGO FISHERY ECOSYSTEM PLAN 2018

Western Pacific Regional Fishery Management Council 1164 Bishop St., Suite 1400 Honolulu, HI 96813

> PHONE: (808) 522-8220 FAX: (808) 522-8226

www.wpcouncil.org

The ANNUAL STOCK ASSESSMENT AND FISHERY EVALUATION REPORT for the MARIANA ARCHIPELAGO FISHERY ECOSYSTEM 2018 was drafted by the Fishery Ecosystem Plan Team. This is a collaborative effort primarily between the Western Pacific Regional Fishery Management Council (WPRFMC), National Marine Fisheries Service (NMFS)-Pacific Island Fisheries Science Center (PIFSC), Pacific Islands Regional Office (PIRO), Division of Aquatic Resources (HI) Department of Marine and Wildlife Resources (American Samoa), Division of Aquatic and Wildlife Resources (Guam), and Division of Fish and Wildlife (CNMI).

This report attempts to summarize annual fishery performance looking at trends in catch, effort and catch rates as well as provide a source document describing various projects and activities being undertaken on a local and federal level. The report also describes several ecosystem considerations, including fish biomass estimates, biological indicators, protected species, habitat, climate change, and human dimensions. Information like marine spatial planning and best scientific information available for each fishery are described. This report provides a summary of annual catches relative to the Annual Catch Limits established by the Council in collaboration with the local fishery management agencies.

Edited By: Thomas Remington, Marlowe Sabater, Asuka Ishizaki, and Sylvia Spalding, WPRFMC.

This document can be cited as follows:

 WPRFMC, 2019. Annual Stock Assessment and Fishery Evaluation Report for the Mariana Archipelago Fishery Ecosystem Plan 2018. Remington, T., Sabater, M., Ishizaki, A., Spalding, S. (Eds.) Western Pacific Regional Fishery Management Council. Honolulu, Hawaii 96813 USA. 276 pp. + Appendices. The Western Pacific Regional Fishery Management Council acknowledges the valuable contributions of the following Plan Team members for drafting sections of this report:

Guam Division of Aquatic and Wildlife Resources: Brent Tibbatts.

CNMI Division of Fish and Wildlife: Michael Tenorio, Keena Leon Guerrero, and William Dunn.

NMFS Pacific Islands Fisheries Science Center: Justin Hospital, Ivor Williams, Joe O'Malley, Michael Parke, Tom Oliver, Hannah Barkley, Frank Parrish, T. Todd Jones, Minling Pan, and Kirsten Leong.

NMFS Pacific Islands Regional Office: Brett Schumacher and Rebecca Walker.

The Council also acknowledges the staff of the NMFS PIFSC Western Pacific Fisheries Information Network (WPacFIN) for providing the technical support to generate the data summaries.

The Council would like to thank the following individuals for their contributions to the report: Samuel Kahng and Alexander Filardo.

This page was intentionally left blank.

EXECUTIVE SUMMARY

As part of its five-year fishery ecosystem plan (FEP) review, the Council identified the annual reports as a priority for improvement. The former annual reports have been revised to meet National Standard regulatory requirements for Stock Assessment and Fishery Evaluation (SAFE) reports. The purpose of the reports is twofold: to monitor the performance of the fishery and ecosystem to assess the effectiveness of the FEP in meeting its management objectives; and to maintain the structure of the FEP living document. The reports are comprised of three chapters: fishery performance, ecosystem considerations, and data integration. The Council will iteratively improve the annual SAFE report as resources allow.

The Fishery Performance chapter of this report first presents a general description of the local fishery within Commonwealth of Northern Mariana Islands (CNMI) and Guam, including both the bottomfish and coral reef management unit species (MUS). The fishery data collection system is then explained, encompassing shore-based and boat-based creel surveys, commercial receipt books, and boat inventories. Fishery meta-statistics for each MUS are organized into a summary dashboard table showcasing the values for the most recent fishing year and a comparison to short-term (10-year) and long-term (20-year) averages. Time series for catch and effort statistics are also provided alongside annual catch limit determinations. For 2018 catch in CNMI, only the slipper lobster exceeded their overfishing limit (OFL), allowable biological catch (ABC), or annual catch limit (ACL). Slipper lobsters had not appeared in the catch record until 2016, and now have exceeded the ACL for three consecutive years. This can likely be attributed to the implementation of the Territory Science Initiative (TSI) project that aimed to improve the reporting and compliance to the commercial receipt book data collection program by the Saipan fish vendors. For 2018 catch in Guam, no MUS were identified that had a recent average catch above the thresholds stipulated by the OFL, ABC, and ACL. ACLs were not specified by NMFS for the coral reef ecosystem MUS in 2017 because NMFS had recently acquired new information that require additional environmental analyses to support the Council's ACL recommendations for these MUS (50 CFR Part 665). Similarly in 2018, no ACLs were implemented for the same reason, plus the passing of the ecosystem components amendment that re-classified nearly all reef-associated species as ecosystem components that do not require ACLs.

For the Mariana Archipelago, the main fisheries monitored are the bottomfish, crustacean, and coral reef fisheries. In CNMI, catch with the bottomfishing gear notably decreased in 2018 considering both all species as well as BMUS only. Bottomfishing CPUE had a significant decrease of 85% from the recent 10-year average. Fishing effort, fishery participation, and fishery bycatch continued to decrease in the last year relative recent decline trends. For the coral reef fisheries, statistics for shore-based and boat-based fisheries are shown separately. The estimated CPUEs in 2018 for both shore- and boat-based reef fisheries in CNMI generally showed increasing recent trends despite several being below their 10-year averages. The fishery participation (number of gear hours) in both shore- and boat-based coral reef fisheries decreased for the most part, but there was a noted increase in the number of shore-based spearfishers in 2018 compared to recent averages. The number of fishing participants in 2018 generally decreased for both the shore- and boat-based fisheries, but there was a significant increase in the number of boat-based spearfishers in the number of boat-based spearfishers. Coral reef bycatch in CNMI has been decreasing in both fisheries over time.

For Guam in 2018, the bottomfish fishery catch was roughly 32,750 lbs. and exhibited a 6% increase in all species catch alongside an 11% increase in BMUS catch relative to the recent short-term trend. No commercial catch trends were given in this report due to issues with data confidentiality (i.e., less than three vendors that reported data). There were general decreases in 2018 bottomfishing CPUE relative to both of the recent 10- and 20-year averages. The total estimated number of fishing trips for bottomfish decreased by 36% compared both short- and long-term averages to 697, though the number of fishers in 2018 showed a slight increase (+6%) relative to recent averages. Bottomfish bycatch statistics decreased in 2018 relative to short- and long-term trends. The Guam coral reef shore- and boat-based fisheries had large declines in catch and CPUE in 2018 relative to both short- and long-term trends despite showing increases in catch from 2017 levels. CPUE for the boat-based coral reef fishery declined relative to its recent averages, whereas pounds caught per gear hour in the shore-based coral reef fishery significantly increased. The fishing effort estimates in 2018 were generally down relative to 10- and 20-year averages except for the boat-based trolling, which showed an increase to nearly 7 million gear hours. Participation was mixed across fisheries and gear types, though the most notable changes included a large increase in gear hours for boat-based gill netting and a large decrease in participants for boat-based gill netting. Coral reef fishery bycatch was down roughly 10-15% compared to short- and long-term averages, but was part of a gradual increasing trend in Guam over the past decade.

An Ecosystem Considerations chapter was added to the annual SAFE report following the Council's review of its fishery ecosystem plans and revised management objectives. Fishery independent ecosystem survey data, human dimensions, protected species, climate and oceanographic, essential fish habitat, and marine planning information are included in the ecosystem considerations section. Fishery independent ecosystem survey data was acquired through visual surveys conducted in CNMI, Pacific Remote Island Area, American Samoa, Guam, Main Hawaiian Islands, and Northwestern Hawaiian Islands. This report illustrates the mean fish biomass for the reef areas within these locations. Additionally, the mean reef fish biomass and mean size of fishes (>10 cm) for CNMI and Guam are presented by sampling year and reef area. Finally, the reef fish population estimates for each study site within CNMI and Guam are provided for hard bottom habitat (0-30 m).

For CNMI, life history parameters including maximum age, asymptotic length, growth coefficient, hypothetical age at length zero, natural mortality, age at 50% maturity, age at sex switching, length at which 50% of a fish species are capable of spawning, and length of sex switching are provided for 10 species of reef fish and 11 species of bottomfish. The same nine life history parameters are provided for 12 reef species and 11 bottomfish in Guam.

Summarized length derived parameters for coral reef fish and bottomfish in CNMI and Guam include: maximum fish length, mean length, sample size, sample size for L-W regression, and length-weight coefficients. Values for 25 coral reef fish species and 10 bottomfish species are presented for CNMI. Values for 22 coral reef fish species and three bottomfish species are presented for Guam.

The socioeconomics section outlines the pertinent economic, social, and community information available for assessing the successes and impacts of management measures or the achievements of the Fishery Ecosystem Plan for the Mariana Archipelago. It meets the objective "Support

Fishing Communities" adopted at the 165th Council meeting; specifically, it identifies the various social and economic groups within the region's fishing communities and their interconnections. The section begins with an overview of the socioeconomic context for the region, and then provides a summary of relevant studies and data for Mariana Islands, followed by summaries of relevant studies and data for each fishery within the Mariana Archipelago. Socioeconomics data will be included in later versions of this report as resources allow.

There were no new data reported for the crustacean or precious coral fisheries in the CNMI or Guam. Considering the CNMI bottomfish fishery, there was an estimated total of 4,612 pounds sold for \$21,994. The average cost of a bottomfish trip in CNMI was not available in 2018; the cost per trip in 2017 was \$38 down from \$65 in 2016. Considering the CNMI reef fishery, there was an estimated 29,006 pounds sold for \$82,547. Note that data on the cost per coral reef trips in the CNMI was considered confidential in 2018. Considering Guam's bottomfish fishery in 2018, there was an estimated 3,557 pounds sold for \$17,022. The average cost of a bottomfish trip decreased from 2017 to \$57 compared to \$72; this is likely closely related to fuel cost per trip, which dropped from \$35 to \$27 from 2017 to 2018. Considering Guam's reef fishery, there was 133,941 pounds sold in 2018 for \$392,548. Note that data on the cost per coral reef trips in the Guam was also considered confidential in 2018.

The protected species section of this report summarizes information and monitors protected species interactions in fisheries managed under the Mariana Archipelago FEP. These fisheries generally have limited impacts to protected species, and do not have federal observer coverage. Consequently, this report tracks fishing effort and other characteristics to detect potential changes to the level of impacts to protected species. Fishery performance data contained in this report indicate that there have been no notable changes in the fisheries that would affect the potential for interactions with protected species, and there is no other information to indicate that impacts to protected species in the Mariana Archipelago.

The climate change section of this report includes indicators of current and changing climate and related oceanic conditions in the geographic areas for which the Western Pacific Regional Fishery Management Council has responsibility. In developing this section, the Council relied on a number of recent reports conducted in the context of the U.S. National Climate Assessment including, most notably, the 2012 Pacific Islands Regional Climate Assessment and the Ocean and Coasts chapter of the 2014 report on a Pilot Indicator System prepared by the National Climate Assessment and Development Advisory Committee. The primary goal for selecting the indicators used in this report is to provide fisheries-related communities, resource managers, and businesses with climate-related situational awareness. In this context, indicators were selected to be fisheries relevant and informative, build intuition about current conditions in light of changing climate, provide historical context and recognize patterns and trends.

The atmospheric concentration of carbon dioxide (CO₂) trend is increasing exponentially with the time series maximum at 409 ppm. The oceanic pH at Station Aloha, in Hawaii has shown a significant linear decrease of -0.0386 pH units, or roughly a 9.4% increase in acidity ([H+]) since 1989. Annual mean sea surface temperature (SST) was 28.26°C in 2018, and over the period of record, annual SST has increased at a rate of 0.022°C/year. The annual anomaly was 0.188 °C hotter than average, with intensification in the northern islands. Tropical cyclone activity was just above average in the Western North Pacific in 2018, with 29 storms, 13 typhoons, and 7

super typhoons. Super Typhoon Yutu notably made landfall on the islands of Tinian and Saipan as a Category 5 equivalent typhoon with estimated winds of 180 mph and a central minimum pressure of 905 mb, marking the second strongest tropical cyclone to impact any U.S. territory on record. The local trend in sea level rise is 3.68 millimeters/year based on monthly mean sea level data from 1993 to 2018 which is equivalent to a change of 1.21 feet in 100 years.

The Mariana Archipelago FEP and National Standard 2 guidelines require that this report include a report on the review of essential fish habitat (EFH) information. The 2018 annual report includes cumulative impacts on EFH as well as a review of relevant life history and habitat information for four common coral reef crustaceans. In 2017, descriptions of relevant life history and habitat information for four common coral reef crustaceans were provided. The guidelines also require a report on the condition of the habitat. In the 2018 annual report, mapping progress and benthic cover are included as indicators, pending development of habitat condition indicators for the Mariana Archipelago not otherwise represented in other sections of this report. The annual report addresses any Council directives toward its plan team, and there were no directives in 2018.

The marine planning section of this report records activities with multi-year planning horizons and begins to track the cumulative impact of established facilities. Development of the report in the future will focus on identifying appropriate data streams. Military activities in the Marianas continue to impact fisheries and their access. With the Records of Decision on the Mariana Islands Testing and Training and Guam and CNMI Military Relocation SEIS, access to fishing grounds will be impacted at Ritidian Point on Guam and at Farallon de Medinilla in CNMI during live-fire exercises. Nearshore water quality will be impacted in Northern Guam until the Northern District Wastewater Treatment Plant is upgraded. A re-release of the draft CNMI Joint Military Training Environmental Impact Statement (EIS) is expected sometime in early 2019. The 2019 Mariana Islands Training and Testing Final Supplemental EIS is expected in spring 2020. CNMI representatives have requested a military liaison to be present at their advisory panel committee meetings, especially to discuss the expired Memorandum of Understanding (MOU) for the Garapan Anchorage, and the Department of Defense will establish a coordinating council to discuss issues associated with increased military activity in the CNMI. A new MOU was not signed in 2018.

The data integration chapter of this report is still under development. The archipelagic data integration chapter explores the potential association between fishery parameters and ecologically-associated variables that may be able to explain a portion of the variance in fishery-dependent data. A contractor completed preliminary evaluations in 2017, and results of exploratory analyses were included for the first time in the 2017 Annual SAFE Report; however, suggested revisions during review by the Archipelagic Plan Team delayed updates to be implemented for the data integration section for the Mariana Archipelago. Results presented from the 2017 analyses showed that the coral reef fisheries in Guam and CNMI generally had a negative association with local precipitation levels. The reef fishery in Guam was shown to have a negative relationship with chlorophyll-*a* concentration. There was no relationship uncovered between akule and precipitation despite a general understanding of the connection between the two factors. All evaluated coral reef taxa in Guam showed a negative relationship with sea surface temperature in the region, while species in the Acanthurids (i.e., surgeonfish/unicornfish) had no notable relationship.

Multivariate analyses were employed in the data integration chapter to more completely evaluate the aggregate effects of ecological parameters on the selected fisheries. A non-metric multidimensional scaling analysis showed that, while presented evaluations were not able to identify any significant levels of association between expanded creel catch data and a range of environmental parameters, the first axis, responsible for explaining 91% of the variance, illustrated the strongest relationships with salinity (negative) and rainfall (positive).

Going forward with the data integration analyses and presentation of results for Chapter 3 of the Annual SAFE Reports, the Plan Team suggested several improvements to implement in the coming year: standardizing and correcting values in CPUE time series, incorporating longer stretches of phase lag, completing comparisons on the species-level and by dominant gear types, incorporating local knowledge on shifts in fishing dynamics over the course of the time series, and utilizing the exact environmental data sets presented in the ecosystem consideration chapter of the annual report. Many of these recommendations were applied to datasets from Hawaii in 2018, and will similarly be done for Mariana Archipelago data integration analyses in the upcoming report cycles. Implementation of these suggestions will allow for the preparation and publication of a more finalized version of the data integration chapter in coming years.

Regarding this 2018 Annual SAFE Report, the 2019 Archipelagic Fishery Ecosystem Plan Team recommends the Council:

- Direct staff to work with NMFS to convene the Plan Team working group for American Samoa, Guam, CNMI and Hawaii to define the ecosystem component species that will be monitored as species that comprise the functional groups (e.g., 'parrotfish', 'browsing surgeon', 'mid-size targeted surgeon', 'medium large snappers', 'non-planktivorous butterflyfishes'), and those that comprise key species in the fisheries (i.e., top 5 consistently monitored important species and the 10 annual catch landings)
- Direct staff to work with NMFS and AS-DMWR, CNMI-DFW, Guam-DAWR, Hawaii-DAR on the revisions to the fisheries modules of the Archipelagic SAFE Reports due to the changes in the Management Unit Species brought about by the Ecosystem Component designation;
- Direct staff to work with NMFS-PIFSC-Ecosystem Science Division and Division of Aquatic Resources on applying the GLM framework to the survey data in order to validate the modeling results.

Additional work item recommendations included:

- Council staff and the Archipelagic Plan Team Chair to work with NMFS and AS-DMWR, CNMI-DFW, Guam-DAWR, Hawaii-DAR on determining which table(s) to remove from the Annual SAFE Report due to the ecosystem component amendment, etc.;
- WPacFIN to follow-up on the status of the creel survey method documentation;
- The report to incorporate more nuance in the narratives of the fishery performance sections; include the issue on pounds sold greater than pounds caught;

- The report to identify presence and absence of hi-liners in the data sets as well as define the criteria of what a hi-liner is;
- Regarding effort and participation metrics for the Annual SAFE Report, Council staff and PIFSC employees to calculate the average fishermen per trip and ensure interview has number of fishermen and average numbers of gear per trip.
- Add the abstracts for relevant data integration studies to Chapter 3; and
- "Cross-walk" tables with the information regularly needed to complete Environmental Assessments (EAs).

This page was intentionally left blank.

TABLE OF CONTENT

Exe	ecutive Sum	nmary	V
Ac	ronyms and	Abbreviations	xxi
1	Fishery Pe	rformance	.25
1.1		CNMI Fishery Descriptions	25
	1.1.1	Background	25
	1.1.2	Fishery Data Collection System	28
	1.1.3	Meta-Data Dashboard Statistics	
	1.1.4	Fishery Summary Dashboard Statistics	34
	1.1.5	Catch Statistics	37
	1.1.6	Catch-per-Unit-Effort (CPUE) Statistics	
	1.1.7	Effort Statistics	
	1.1.8	Participants	
	1.1.9	Bycatch Estimates	
	1.1.10	Number of Federal Permit Holders	
	1.1.11	Status Determination Criteria	
	1.1.12	Overfishing Limit, Acceptable Biological Catch, and Annual Catch Limits.	
	1.1.13	Best Scientific Information Available	
	1.1.14	Harvest Capacity and Extent	
	1.1.15	Administrative and Regulatory Actions	
	1.1.16	References	
1.2	1.1.10	Guam Fishery Descriptions	
	1.2.1	Bottomfish Fishery	
	1.2.2	Coral Reef Fishery	
	1.2.3	Fishery Data Collection System	
	1.2.4	Meta-Data Dashboard Statistics	
	1.2.5	Creel Survey Meta-Data Statistics	
	1.2.6	Fishery Summary Dashboard Statistics	
	1.2.7	Catch statistics	
	1.2.8	Catch-per-Unit-Effort (CPUE) Statistics	
	1.2.9	Effort Statistics	
	1.2.10	Participants	
	1.2.10	Bycatch Estimates	
	1 2 12	Number of Federal Permit Holders	99
	1.2.12	Status Determination Criteria	
	1.2.13	Overfishing Limit, Acceptable Biological Catch, and Annual Catch Limits.	
	1.2.14	Best Scientific Information Available	
	1.2.15		
	1.2.10	Harvest Capacity and Extent	
		Other Relevant Ocean-Uses and Fishery-Related Information	
	1.2.18	Administrative and Regulatory Actions	
	1.2.19	References	
	Ecosystem	Considerations 1	
2.1	011	Coral Reef Ecosystem Parameters	
	2.1.1	Regional Reef Fish Biomass	
	2.1.2	CNMI Reef Fish Biomass	
	2.1.3	CNMI Archipelagic Mean Fish Size	. 119

2.1.4	CNMI Reef Fish Population Estimates	122
2.1.5	Guam Reef Fish Biomass	
2.1.6	Guam Archipelagic Mean Size	
2.1.7	Guam Reef Fish Population Estimates	
2.2	Life History and Length-Derived Parameters	
2.2.1	CNMI Coral Reef Ecosystem – Reef Fish Life History	
2.2.2	CNMI Bottomfish Ecosystem – Bottomfish Life History	
2.2.3	Guam Coral Reef Ecosystem – Reef Fish Life History	
2.2.4	Guam Bottomfish Ecosystem – Bottomfish Life History	
2.2.5	References	
2.3	Socioeconomics	161
2.3.1	Response to Previous Council Recommendations	162
2.3.2	CNMI	
2.3.3	Guam	174
2.3.4	Ongoing Research and Information Collection	187
2.3.5	Relevant PIFSC Economics and Human Dimensions Publications: 2018	
2.3.6	References	189
2.4	Protected Species	
2.4.1	Indicators for Monitoring Protected Species Interaction	
2.4.2	FEP Conservation Measures	
2.4.3	Status of Protected Species Interactions in the Marianas FEP Fisheries	
2.4.4	Identification of Emerging Issues	
2.4.5	Identification of Research, Data, and Assessment Needs	
2.5	Climate and Oceanic Indicators	
2.5.1	Introduction	
2.5.2	Response to Previous Plan Team and Council Recommendations	199
2.5.3	Conceptual Model	
2.5.4	Selected Indicators	
2.5.5	References	222
2.6	Essential Fish Habitat	225
2.6.1	Introduction	225
2.6.2	Habitat Use by MUS and Trends in Habitat Condition	227
2.6.3	Report on Review of EFH Information	
2.6.4	EFH Levels	
2.6.5	Research and Information Needs	
2.6.6	References	
2.7	Marine Planning	238
2.7.1	Introduction	
2.7.2	Response to Previous Council Recommendations	
2.7.3	Marine Managed Areas Established under FEPs	
2.7.4	Fishing Activities and Facilities	
2.7.5	Non-Fishing Activities and Facilities	
2.7.6	Pacific Islands Regional Planning Body Report	
2.7.7	References	
3 Data Integ	gration	
3.1	Introduction	

3.1.1	Potential Indicators for Nearshore Fisheries	
3.1.2	2018 Recommendations for Chapter Development	
3.1.3	Past Work	
3.2	Precipitation	
3.2.1	Guam	
3.3	Sea Surface Temperature	
3.3.1	CNMI	
3.3.2	Guam	
3.4	Primary Productivity	
3.4.1	CNMI	
3.4.2	Guam	
3.5	Multivariate Assessments of Other Ecosystem Variables	
3.5.1	Non-metric Multidimensional Scaling	
3.6	References	
Appendix A: Gu	am and CNMI FEP management unit species list	A-1
Appendix B: Lis	st of Protected Species and Designated Critical Habitat	B-1

TABLE OF TABLES

Table 1. Summary of CNMI creel survey meta-data	. 33
Table 2. Summary of commercial receipt book meta-data	
Table 3. 2018 annual indicators for the coral reef and bottomfish fisheries describing	
performance relative to short-term (10-year) and long-term (20-year) averages	. 35
Table 4. Summary of catch (lbs.) for all species caught by bottomfishing gear from 1983-2018	
recorded by creel surveys and the commercial purchase system	
Table 5. Summary of BMUS catch (lbs.) for from 1983-2018 for creel surveys and the	
commercial purchase system	. 39
Table 6. Summary of CREMUS catch (lbs.) from 1983-2018 for creel surveys and the	
commercial purchase system	. 40
Table 7. Expanded CNMI creel survey catch estimates (lbs.) from 2005-2018	
Table 8. Catch for top species complexes in CNMI boat-based creel data from 2000-2018	
Table 9. Catch for top species complexes in CNMI shore-based creel data from 2000-2018	
Table 10. CPUE for top fishing methods in CNMI shore-based fisheries from 2005-2018	
Table 11. CPUE for top fishing methods in CNMI boat-based fisheries from 2000-2018	
Table 12. Effort estimates in CNMI coral reef and bottomfish fisheries from 2000-2018	
Table 13. Number of fishermen participating in the CNMI bottomfish fishery and number of	
gears in the CNMI coral reef fishery from 2000-2018	. 48
Table 14. Bycatch estimates in CNMI non-bottomfishing boat-based fisheries from 2000-2018	
Table 15. Bycatch estimates in the CNMI bottomfish fishery from 2000-2018	
Table 16. Bycatch estimates in the CNMI shore-based fishery from 2000-2018	
Table 17. Number of federal permits holders for the CNMI crustacean and bottomfish fisherie	
from 2009-2018	
Table 18. Overfishing threshold specifications for the BMUS in CNMI	
Table 19. Rebuilding control rules for the BMUS in CNMI	. 54
Table 20. Status determination criteria for CNMI CREMUS using CPUE based proxies	
Table 21. Stock assessment parameters for the CNMI BMUS complex (Yau et al. 2015)	
Table 22. Best available MSY estimates for the coral reef MUS in CNMI	
Table 23. CNMI ACL table with three-year average catch in pounds	
Table 24. CNMI proportion of harvest capacity and extent for 2018	
Table 25. Summary of Guam creel survey meta-data describing survey performance parameter	
with potential influence on the creel survey expansion from 1982-2018	
Table 26. Summary of Guam commercial receipt book meta-data describing reporting	
performance parameters with potential influence on total commercial landing estimate	
from 1980-2018	
Table 27. 2018 annual indicators for the coral reef and bottomfish fishery describing fishery	
performance comparing current estimates with short-term (10 year) and long-term (20	
year) average values	
Table 28. Summary of time series of catch (lbs.) for all species caught using the bottomfishing	
gear in Guam from 1980-2018.	-
Table 29. Summary of time series of BMUS catch (lbs.) in Guam from 1980-2018	
Table 30. Summary of time series of CREMUS catch (lbs.) in Guam from 1980-2018	
Table 31. Summary of expanded creel survey time series of catch (lbs.) by gear type in Guam	
1982-2018	

Table 32. Catch time series of 11 top CREMUS from Guam boat-based creel survey expansion	
data from 2000-2018	82
Table 33. Catch time series of 11 top CREMUS from Guam shore-based creel survey expanses data from 1980-2018	
Table 34. CPUE time series for dominant fishing methods in Guam shore-based fisheries CF	
from 1984-2018	
Table 35. CPUE time series for dominant fishing methods in Guam boat-based fisheries CPU	
from 1982-2018	
Table 36. Time series of effort estimates (gear hours or no. trips for bottomfish) from Guam	
coral reef and bottomfish fisheries for 1982-2018.	
Table 37. Number of boats participating in the Guam bottomfish fishery and number of gear	s in
the Guam boat- and shore-based coral reef fisheries from 1982-2018	
Table 38. Time series of bycatch estimates in Guam boat-based non-bottomfishing fisheries	from
1982-2018	
Table 39. Time series of bycatch estimates in the Guam bottomfish fishery from 1982-2018.	
Table 40. Time series of bycatch estimates in the Guam shore-based fishery from 1984-2018	
Table 41. Number of federal permits holders for the crustacean and bottomfish fisheries of C	
from 2009-2018	
Table 42. Overfishing threshold specifications for Guam BMUS	
Table 43. Rebuilding control rules for Guam BMUS	101
Table 44. Status determination criteria for the coral reef management unit species using CPU	
based proxies	
Table 45. Stock assessment parameters for the Guam BMUS complex	
Table 46. Best available MSY estimates for the coral reef MUS in Guam	
Table 47. Guam ACL table with three-year average catch (lbs.)	
Table 48. Guam 2018 ACL proportion of harvest extent and the harvest capacity	
Table 49. Reef fish estimates for CNMI CREMUS in 0-30 m hard bottom habitat	
Table 50. Reef fish population estimates for Guam CREMUS	
Table 51. Available age, growth, and reproductive maturity information for coral reef specie	
targeted for otolith and gonad sampling in CNMI	
Table 52. Available length-derived information for various coral reef species in CNMI	
Table 53. Available age, growth, and reproductive maturity information for bottomfish speci	
targeted for otoliths and gonads sampling in CNMI	
Table 54. Available length-derived information for various bottomfish species in CNMI	
Table 55. Available age, growth, and reproductive maturity information for coral reef specie	
targeted for otoliths and gonads sampling in Guam Table 56. Available length derived information for various coral reef species in Guam	
Table 50. Available age, growth, and reproductive maturity information for bottomfish speci	
targeted for life history sampling (otoliths and gonads) in Guam	
Table 58. Available length derived information for various bottomfish species in Guam	
Table 59. Commercial landings and revenue information of CNMI bottomfish fishery, 2009-	
2018	
Table 60. Average trip costs for CNMI bottomfish trips, 2009–2017	170
Table 61. Commercial landings and revenue information of CNMI coral reef fishery, 2009-2	2018
Table 01. Commercial fandings and revenue information of Crivin coral reef fishery, 2007-2	
Table 62. Average costs for CNMI bottomfish trips, 2009–2017	174
	/ -

Table 63. Commercial landings, revenue, and price information of Guam bottomfish fishery, 2009-2018
Table 64. Average trip costs for Guam bottomfish fishing trips from 2009–2018
Table 65. Commercial landings and revenue information of Guam coral reef fish fishery, 2009-2018. 186
Table 66. Average trip costs for Guam spear/snorkel fish trips from 2011–2018 (adjusted to 2018 dollars)
Table 67. Pacific Islands Region 2018 Commercial Fishing Economic Assessment Index 188
Table 68. Pacific Islands Region 2019 Commercial Fishing Economic Assessment Index 188
Table 69. Summary of ESA consultations for Mariana Archipelago FEP Fisheries 192
Table 70. Candidate ESA species, and ESA-listed species being evaluated for critical habitat
designation
Table 71. Summary of habitat mapping in CNMI 229
Table 72. Mean percent cover of live coral from RAMP sites collected from towed-diver surveys in the Mariana Archipelago 231
Table 73. Mean percent cover of macroalgae from RAMP sites collected from towed-diver
surveys in the Mariana Archipelago
Table 74. Mean percent cover of crustose coralline algae from RAMP sites collected from
towed-diver surveys in the Mariana Archipelago
Table 75. Level of EFH information available for the Western Pacific PCMUS
Table 76. Level of EFH information available for Western Pacific BMUS and seamount
groundfish MUS complexes
Table 77. Level of EFH information available for the Western Pacific crustacean MUS
Table 78. MMAs established under FEPs from 50 CFR § 665 240
Table 79. Department of Defense major planning activities 242
Table 80. Families in creel surveys from the U.S. Western Pacific analyzed in this report 255
Table 81. Correlation coefficients (r) between recreational coral reef fishery catch (kg) and SST (2 C) in the CND/II for 12 ten targe between 2000, 201(r) = 255
(°C) in the CNMI for 12 top taxa harvested from 2000-2016
SST (°C) in Guam for 12 top taxa harvested from 1985-2016
Table 83. Correlation coefficients (r) from comparisons of time series of the CNMI recreational
coral reef fishery annual catch (kg) and fluorometric chlorophyll-a concentrations
(mg/m^3) from 2000-2014
Table 84. Correlation coefficients (r) from comparisons of time series of for shore-and boat-
based creel survey records in Guam (kg) and fluorometric chlorophyll-a concentrations
(mg/m^3) for 12 top taxa harvested from 1998 - 2014. Significant correlations are
indicated in bold (α =0.05)

TABLE OF FIGURES

Figure 1. Mean fish biomass ($g/m^2 \pm$ standard error) of CREMUS from 2010-2018 by latitude;
figure continued on next page
Figure 2. Mean fish biomass ($g/m^2 \pm$ standard error) of CREMUS from 2010-2018 by latitude
with mean estimates overlaid in red; figure continued on next page 117
Figure 3. Mean fish size (cm, TL ± standard error) of CNMI CREMUS from 2010-2018 by
latitude with mean estimates overlaid in red; figure continued on next page 120
Figure 4. Mean fish biomass ($g/m^2 \pm$ standard error) of Guam CREMUS from the years 2010-
2018 with mean estimates overlaid in red
Figure 5. Mean fish size (cm, TL ± standard error) of Guam CREMUS from 2010-2018 with
mean estimates overlaid in red
Figure 6. Average length over time of representative CNMI CREMUS from the BioSampling
Program; figure continues for various species onto the next two pages
Figure 7. Average length over time of CNMI BMUS derived from the BioSampling Program;
continued from previous page
Figure 8. Average length over time of representative Guam CREMUS derived from the
BioSampling Program; continued from previous two pages
Figure 9. Average length over time of representative Guam BMUS derived from the
BioSampling Program
Figure 10. Settlement of the Pacific Islands, courtesy of Wikimedia Commons,
https://commons.wikimedia.org/wiki/File:Polynesian_Migration.svg
Figure 11. The commercial landings and revenues of BMUS, for the CNMI bottomfish fishery,
2009-2018 (Adjusted to 2018 dollars)
Figure 12. The prices of BMUS for the CNMI bottomfish fishery, 2009-2018
Figure 13. Average costs for CNMI bottomfish trips, 2009–2017 (adjusted to 2017 dollars) 169
Figure 14. The pounds sold and revenues for the CNMI reef fish fishery, 2009-2018 (adjusted to 2018 dollars)
2018 dollars)
Figure 15. The fish prices of CREMUS for the CNMI reef fishery, 2009-2018
Figure 16. Average costs for CNMI spearfishing trips, 2009–2017 (adjusted to 2017 dollars). 173
Figure 17. The pounds sold and revenues for the Guam bottomfish fishery, 2009-2018 (adjusted
to 2018 dollars)
Figure 18. The prices of BMUS for the Guam bottomfish fishery, 2009-2018
Figure 19. Average trip costs for Guam bottomfish fishing trips from 2009–2018 (adjusted to
2018 dollars)
Figure 20. The commercial landings and revenues, for the Guam reef fish fishery, 2009-2018 185
Figure 21. The prices of CREMUS for the Guam reef fish fishery, 2009-2018
Figure 22. Average trip costs for Guam spear/snorkel trips from 2011–2018 (adjusted to 2018
dollars)
Figure 23. Schematic diagram illustrating how indicators are connected to one another and how
they vary as a result of natural climate variability
Figure 24. Schematic diagram illustrating how indicators are connected to one another and how
they vary as a result of natural climate variability
Figure 25 Schematic diagram illustrating how indicators are connected to one another and how
they vary as a result of anthropogenic climate change
Figure 26. Regional spatial grids representing the scale of the climate change indicators being
monitored

Figure 27. Monthly mean (red) and seasonally-corrected (black) atmospheric carbon dioxide	
···· ·· · · · · · · · · · · · · · · ·	204
Figure 28. Oceanic pH (black) and its trend (red) at Station ALOHA from 1989 – 2016	205
Figure 29. Oceanic Niño Index from 1950-2018 (top) and 2000-2018 (bottom) with El Niño	
periods in red and La Niña periods in blue	206
Figure 30. Pacific Decadal Oscillation from 1950–2018 (top) and 2000–2018 (bottom) with	
positive warm periods in red and negative cool periods in blue	
Figure 31. 2018 Pacific basin tropical cyclone tracks	209
Figure 32. 2018 tropical storm totals by region	
Figure 33. 2018 Accumulated Cyclone Energy (ACE) Index by region	210
Figure 34. Sea surface temperature climatology and anomalies from 1982-2018	212
Figure 35. Coral Thermal Stress Exposure measured at CNMI Virtual Station 2013-2018 (Co	ral
Reef Watch Degree Heating Weeks)	
Figure 36. Chlorophyll-A (Chl-A) and Chl-A Anomaly from 1982-2018	216
Figure 37. CMAP precipitation across the Marianas Grid with 2018 values in red	218
Figure 38a. Sea surface height and anomaly	219
Figure 39. Monthly mean sea level without regular seasonal variability due to coastal ocean	
	221
Figure 40. Substrate EFH Limit of 700 m isobath around the Mariana Archipelago (from Rya	
al. 2009)	
Figure 41. CNMI Land and Seafloor Area and Primary Data Coverage	
Figure 42. Regulated fishing areas of the Mariana Archipelago	
Figure 43. Total annual precipitation (in.) in Guam from 1980-2016	
Figure 44. Time series of total annual estimated (i.e. expanded) landings of atulai in kilogram	
from Guam shore-and boat-based creel survey records from 1982-2016	
Figure 45. Time series of total sampled (left) and expanded (right) effort for top gear types in	
shore-based (top) and boat-based (bottom) creel surveys in Guam from 1982-2016	
Figure 46. Linear regression between total atulai catch (kg) in the Guam shore-based and boa	
based creel survey records and total annual rainfall (in.) from 1982-2016	
Figure 47. Time series of total annual expanded landings of <i>Decapterus macarellus</i> (kg) in	
Guam shore-and boat-based creel survey records from 1982-2016	252
Figure 48. Time series of SST (°C) in the CNMI from 1985-2016 ($CV = 0.55$)	
Figure 49. Time series of SST (°C) from 1985-2016 in Guam ($CV = 1.38$)	
Figure 50. Time series of total annual catch (kg; blue) for the CNMI recreational coral reef	
fishery plotted alongside average annual SST (°C; black) from 2000-2016	255
Figure 51. Linear regression showing the correlation between total annual catch (kg) in creel	
survey records and average annual SST (°C) in the CNMI from 2000-2016	256
Figure 52. Linear regressions showing the three top correlations between total annual catch (k	
from creel survey records and average annual SST (°C) in the CNMI from for (a)	-8)
Mullids, (b) Carangids, and (c) Lutjanids from 2000–2016	257
Figure 53. Time series of total annual catch (kg; blue) in the Guam shore-and boat-based cree	
survey records plotted with average annual SST (°C; black) from 1985-2016	
Figure 54. Linear regression between total annual catch (kg) for shore- and boat-based creel	200
survey records and average annual SST (°C) in Guam from 1985-2016	259
survey records and average annual bor (C) in Guain noin 1965 2010	237

Figure 55. Linear regressions showing three top correlations between total annual catch (kg) for
shore-and boat-based creel survey records and average annual SST (°C) in Guam for (a)
Lutjanids, (b) Siganids, and (c) Mugilids from 1985–2016
from 1998-2016 (CV=6.28)
Figure 57. Time series of fluorometric chlorophyll-a concentrations (mg/m^3) around Guam from
1998-2016 (CV=7.03)
Figure 58. Comparison of the CNMI recreational reef fish catch (kg; black) from creel survey records with two years of time lag (t+2 years) and fluorometric chlorophyll- <i>a</i>
concentrations (mg/m ³ ; blue) from 2000-2014 ($r = 0.32$)
Figure 59. Linear regression between total annual catch (kg) phase lag (t+2 years) and
fluorometric chlorophyll-a concentrations (mg/m ³) in CNMI from 2000-2014
for the CNMI from creel survey records with phase lag (t+2 years) and fluorometric
chlorophyll- <i>a</i> concentrations (mg/m^3) for (a) Holocentrids, (b) Serranids, and (c)
Acanthurids from 2000–2014
Figure 61. Comparison of Guam recreational reef fish catch for shore-and boat-based creel survey records (kg; black) with two years of time lag (t+2 years) and fluorometric
chlorophyll- <i>a</i> concentrations (mg/m ³ ; blue) from 1998-2014
Figure 62. Linear regression between total annual catch (kg) for Guam shore-and boat-based
creel survey records with phase lag (t+2 years) and fluorometric chlorophyll- a
concentrations (mg/m ³) from 1998-2014
Figure 63. Linear regressions showing the three top correlations between total annual catch (kg)
for Guam for shore-and boat-based creel survey records with phase lag (t+2 years) and
fluorometric chlorophyll- <i>a</i> concentrations (mg/m^3) for (a) Balistidae, (b) Mugilidae, and
(c) Mullidae from 1998–2014
solution for the CNMI multivariate analysis
Figure 65. One-dimensional scatterplot overlaid with a joint biplot depicting ordination
scores resulting from an NMS analysis on creel survey expanded catch data and
prominent environmental parameters in the CNMI from 2000-2014
Figure 66. NMS scree plot showing the stress test to determine dimensionality for the final
solution for the Guam multivariate analysis; two-axis solution was recommended273
Figure 67. Two-dimensional scatterplot overlaid with a joint biplot depicting ordination
scores resulting from an NMS analysis on creel survey expanded catch data and prominent environmental parameters in Guam from 1989-2014
prominent environmentar parameters in Ouani 110in 1969-2014

Acronym	Meaning
ABC	Acceptable Biological Catch
ACE	Accumulated Cyclone Energy
ACL	Annual Catch Limits
ACT	Annual Catch Target
AM	Accountability Measures
AVHRR	Advanced Very High Resolution Radiometer
BAC-MSY	Biomass Augmented Catch MSY
B _{FLAG}	warning reference point for biomass
BiOp	Biological Opinion
BMUS	Bottomfish Management Unit Species
BOEM	Bureau of Ocean Energy Management
BSIA	Best Scientific Information Available
CFR	Code of Federal Regulations
CMLS	Commercial Marine License System
CMS	coastal and marine spatial
CMUS	Crustacean Management Unit Species
CNMI	Commonwealth of the Northern Mariana Islands
CPUE	Catch per Unit Effort
CRED	Coral Reef Ecosystem Division
CREMUS	Coral Reef Ecosystem Management Unit Species
DAWR	Division of Aquatic and Wildlife Resources
DGI	Daily Growth Increments
DLNR-DAR	Department of Land and Natural Resources-Division of Aquatic Resources
DLNR-DFW	Department of Land and Natural Resources-Division of Fish and Wildlife
DPS	Distinct Population Segment
EEZ	Exclusive Economic Zone
EFH	Essential Fish Habitat
EIS	Environmental Impact Statement
EKE	Eddy kinetic energy
ENSO	El Niño Southern Oscillation
EO	Executive Order
ESA	Endangered Species Act
FEP	Fishery Ecosystem Plan
FMP	Fishery Management Plan
FRS	Fishing Report System
GAC	Global Area Coverage
GFS	global forecast system
HAPC	Habitat Area of Particular Concern
HDAR	Hawaii Division of Aquatic Resources
IBTrACS	International Best Track Archive for Climate Stewardship

ACRONYMS AND ABBREVIATIONS

LOF	List of Fisheries
LVPA	Large Vessel Prohibited Area
MFMT	Maximum Fishing Mortality Threshold
MHI	Main Hawaiian Island
MMA	marine managed area
MMPA	Marine Mammal Protection Act
MPA	marine protected area
MPCC	Marine Planning and Climate Change
MPCCC	Council's MPCC Committee
MSA	Magnuson-Stevens Fishery Conservation and Management Act
MSFCMA	Magnuson-Stevens Fishery Conservation and Management Act
MSST	Minimum Stock Size Threshold
MSY	Maximum Sustainable Yield
MUS	management unit species
NCADAC	National Climate Assessment & Development Advisory
	Committee
NCDC	National Climatic Data Center
NEPA	National Environmental and Policy Act
NESDIS	National Environmental Satellite, Data, and Information Service
NMFS	National Marine Fisheries Service
NMFS	National Marine Fisheries Service
NOAA	National Oceanic and Atmospheric Administration
NWHI	Northwestern Hawaiian Islands
OFL	Overfishing Limits
OFR	Online Fishing Report
ONI	Ocean Niño Index
OR&R	Office of Response and Restoration
OY	Optimum Yield
PacIOOS	Pacific Integrated Ocean Observing System
PCMUS	Precious Coral Management Unit Species
Pelagic FEP	Fishery Ecosystem Plan for the Pacific Pelagic Fisheries
PI	Pacific Islands
PIBHMC	Pacific Island Benthic Habitat Mapping Center
PIFSC	Pacific Island Fisheries Science Center
PIRCA	Pacific Islands Regional Climate Assessment
PIRO	NOAA NMFS Pacific Islands Regional Office
PMUS	pelagic management unit species
POES	Polar Operational Environmental Satellite
PRIA	Pacific Remote Island Areas
RAMP	Reef Assessment and Monitoring Program
RPB	Regional Planning Body
SAFE	Stock Assessment and Fishery Evaluation
SBRM	Standardized Bycatch Reporting Methodologies
SDC	Status Determination Criteria
SEEM	Social, Economic, Ecological, Management uncertainties
SPC	Stationary Point Count
	Sutionary Fourt Count

SST	Sea Surface Temperature
TAC	Total Allowable Catch
USACE	United States Army Corps of Engineers
WPacFIN	Western Pacific Fishery Information Network
WPRFMC	Western Pacific Regional Fishery Management Council
WPSAR	Western Pacific Stock Assessment Review
WW3	Wave Watch 3

This page was intentionally left blank.

1 FISHERY PERFORMANCE

1.1 CNMI FISHERY DESCRIPTIONS

1.1.1 Background

The Commonwealth of the Northern Mariana Islands (CNMI) is a chain of islands in the Western Pacific Ocean. Along with the island of Guam, the chain is historically known as the Mariana Islands. The CNMI consists of 14 small islands situated in a north-south direction, stretching a distance of about 500 km. The surrounding waters of the CNMI play an integral role in the everyday lives of its citizens. The ocean is a major source of food and leisure activities for residents and tourists alike. Archeological research has also revealed evidence of fishing activities in the CNMI dating back 3,000 years. Although the composition of fishing activities in the Marianas has changed significantly since then, a common view of its importance remains.

Fisheries during the German occupation

During the German occupational period (1899-1914) a majority of the economic focus in the Northern Marianas was on the copra industry. Few commercial fisheries were noted during this period of time, as the German administration focused efforts on crop production and feral cattle trade (Russell 1999). Chamorro and Carolinians utilized the protected lagoon and open waters with several fishing methods: talaya (cast net), chinchulu (surround net), gigao (fish weir), tokcha (spear), tupak (hook and line), and Carolinians additionally gleaned sea cucumbers for the Asian Markets. Most of these activities were for subsistence purposes, with the catch being distributed and bartered among relatives and acquaintances.

Fisheries during the Japanese occupation

Fisheries development prospered during the Japanese administration (1914-1945), becoming the nation's second largest industry. Small pelagic fishing operations were established and the Garapan port became the main area for drying fish. Large scale fishing activities occurred during the 1930s, shown as Saipan produced 11 percent of total tuna landed in Micronesia (Bowers 2001). However, efforts to develop the tuna fishery shifted to Palau and Federated States of Micronesia (FSM) due to the availability of bait fish in the region. Subsistence fishing still persisted within the lagoon and fringing reefs, and was mainly conducted by the natives though a large extraction of sea cucumbers did occur. There were several main fishing methods used during this period: cast net, spear, gill net, surround net, hook and line, and gleaning. During this period, the topshell (*Trochus niloticus*) was also introduced into the Marianas.

Fisheries during the U.S. military occupation

The fishing industry was destroyed during World War 2, but quickly rebuilt afterwards with support from the U.S. military. Okinawans who operated the fishery prior to the war were hired to operate and train locals to fish commercially, targeting pelagic species. A company called Saipan Fishing Company operated during this time, and contributed to the early re-development of post-war commercial fisheries in the CNMI (Bowers 2001). Most of the fishing activities were for *Katsuwanus pelamis* (bonito) and other tuna species. However, other resources, such as big-eye scad, reef fish, and lobster, were also harvested during calm weather. The Chamorro and Carolinians continued subsistence fishing in the lagoon after the war. Although limited quantities of monofilament nets were available during this period, they were used to capture lagoon fish

and along the reef lines. The use of modern fishing gear such as masks, rubber fins, and flash lights made it much easier to harvest coral reef resources during this time.

Fisheries activities within the past two decades

The CNMI has had numerous changes in its fisheries over the past twenty years. In the mid-1990s, commercial fishing activities increased significantly. Commercial SCUBA fishing became a common method, not only to support local demand for reef fish, but to bolster exports to Guam as well. Large-scale commercial bottomfishing in the Northern Islands of the CNMI peaked starting in the mid-1990s through 2002, with landings being both sold locally and exported to Japan. Troll fishing continued to be dominant during this period. An exploratory, deepwater shrimp fishery also developed, but did not last due to internal company issues and gear losses. Around this time, a sea cucumber fishery also began on Rota before migrating to Saipan; ultimately, however, this fishery was found to be unstable and was subsequently halted.

Several fishing companies entered the fisheries only to close down a few years later. The CNMI reached its highest population during the last two decades, most of whom have been migrant workers from Asia. The tourism industry has also been increasing, which contributes to high demand for fresh fish. Subsistence fishing within the nearshore waters of Saipan, Tinian, and Rota has also increased.

In the 2000s, small-scale troll, bottom and reef fish fisheries persisted, with landings sold locally. Federal and state support was provided multiple times to further develop fisheries in the CNMI with intermittent success. An exploratory longline fishery was funded and operated in the CNMI in the mid-2000 for about two years, but eventually closed down due to low productivity of high-value, pelagic fish, among other issues within the business. A few larger (40-80') bottomfishing vessels were also operational during this period, with a majority of them fishing the northern islands and offshore banks. A few of these vessels were recipients of financial assistance to improve their fishing capacities.

Fisheries in the CNMI have generally been relatively small and fluid, with 16-20' boats fishing within 20 miles from Saipan. Many of these small vessels conduct multiple fishing activities during a single trip. For example, a company that is supported mainly by troll fishing may also conduct bottomfishing and spearfishing to supplement their income. Fishing businesses tend to enter and exit the fishery when it is economically beneficial to do so, as they are highly sensitive to changes in the economy, development, population, and regulations. Subsistence fishing continues; however, fishing methods and target species have shifted in step with population demographics and fishery restrictions. Nearshore hook and line, cast net, and spear fishing are common activities, but fishing methods such as gill net, surround net, drag net, and SCUBA-spear have been restricted or outright banned in the CNMI since the early 2000s.

1.1.1.1 Bottomfish Fishery

The bottomfish fishery has not changed much from its early years in certain aspects. Relatively small (<25ft) fishing vessels are still being used to access bottom fishing grounds around Saipan and Tinian, while the larger (>25ft) vessels are used to access bottomfish resources in the Northern Islands. Only a handful of these larger bottom fishing vessels are operating within the CNMI. Most of the small bottomfishing vessels are owned by vendors; there are, however, a few subsistence bottomfishers that participate in the fishery intermittently. More recently, improved

technologies, such as sophisticated electronics to locate fish and various types of reels replacing handlines, have entered the CNMI bottomfish fishery.

Two distinct types of bottomfish fisheries are identified in the CNMI: shallow-water bottom fishing, which targets fish at depths down to 150 m, and deepwater bottom fishing, which targets fish at depths greater than 150 m. Species targeted by the shallow-water fishery consist of the Redgill Emperor (*Lethrinus rubrioperculatus*), Black Jack (*Caranx lugubris*), Matai (*Epinephelus fasciatus*), Sas (*Lutjanus kasmira*), and Lunartail Grouper (*Variola louti*), among other fish residing at similar depths. Species targeted by the deepwater bottom fishing depths (>150m) include onaga (*Etelis corsucans*), ehu (*E. carbunculus*), yellowtail kalekale (*Pristipomiodes auricilla*), amberjack (*Seriola dumerili*), blueline gindai (*P. argyrogrammicus*), gindai (*P. zonatus*), opakapaka (*P. filamentosus*), and eightbanded grouper (*Hyporthordus octofasciatus*), among other fish residing at similar depths.

Bottomfish Management Unit Species (BMUS) are not the only species caught in the shallowbottom fishery. Coral Reef Ecosystem Management Unit Species (CREMUS) are also caught in the shallow-bottom fishery because of their close proximity to reefs. These fish are caught with various hook and line gears, including homemade handlining gear, rod and reel, and electric reels. Deep-water bottomfishing requires more efficient fishing gears, such as hydraulic reels. Bottomfishing trips generally occur during the day, but fishing trips to the Northern Islands can take two to four days depending on vessel size and refrigeration capacity. These trips are most productive during calm weather months. Successful fishermen targeting deep-water bottomfish tend to fish for one to four years before leaving the fishery, whereas the majority of fishermen targeting shallow-water bottomfish tend to leave the fishery after the first year.

The overall participation of fishermen in the bottomfish fishery tends to occur on a relatively short-term basis (i.e., less than four years). The slight difference between shallow-water and deep-water fishermen likely reflects the greater skill and investment required to participate in the deepwater bottomfish fishery. In addition, deepwater bottomfishing tends to include larger ventures that are more buffered from the impulses of individual choice, and are usually dependent on a skilled captain and fishermen. Overall, the long-term commitment to hard work, maintenance and repairs, and staff retention appear to be challenging for CNMI bottomfish fishermen to sustain their efforts for more than a few years. A full list of BMUS species is provided in Appendix A.

1.1.1.2 Coral Reef Fishery

Coral reef fisheries have been generally steady in recent years relative to previous decades. Small-scale nearshore fisheries in the CNMI continue to be important socially, culturally, recreationally, financially, and for subsistence. Most fishermen are subsistence fishers, with a number of them selling a portion of their catch to roadside vendors and some of these vendors employing the fishermen to maintain a constant supply of reef fish. Most of the fishing for coral reef species occurs within the Saipan lagoon and fringing reefs around the islands, targeting mainly finfish and invertebrates. All reef fish catches are sold to local markets or used for personal consumption with a minimal portion exported for off-island residents. Shoreline access is the most common way to harvest coral reef resources. Vessels are generally used during calm weather to fish areas not as accessible other times of the year, with fishing trips to other islands being made when the weather is favorable. Fishing methods have not changed significantly compared to previous years; hook and line, cast netting, spear fishing, and gleaning are methods still being used today. Some of the common families found in the CNMI reef fish markets are Acanthuridae (surgeonfish), scoriae (parrotfish), multiday (goatfish), serenade (grouper), abridge (wrasse), holocentridae (soldier/squirrelfish), carangidae (jacks), scombridae (scad), haemulidae (sweetlips), gerridae (mojarra), kyphosidae (rudderfish), and mugilidae (mullet), as well as other non-finfish families. A full list of CREMUS species is provided in Appendix A.

1.1.2 Fishery Data Collection System

A majority of the information collected by the CNMI Division of Fish and Wildlife (DFW) is fishery-dependent. Since the early-1980s, attempts were made to establish a data collection program for the nearshore fisheries, but failed due to intergovernmental issues. Over recent decades, significant time and effort has been made to further develop nearshore fishery data collection. This effort has resulted in the re-establishment of the shore-based creel survey program by DFW in collaboration with other local and federal agencies.

1.1.2.1 Creel Surveys

Currently the CNMI maintains both a boat- and shore-based creel survey for the island of Saipan, with plans for expansion to the populated neighboring islands. The programs were established in 2000 and 2005, respectively, in order to strengthen the capacity of DFW in providing sufficient information to the public regarding local fisheries. Other programs, such as the invoicing system and importation monitoring, provide supplemental information on harvest and demand for the fishery.

Effective management of Saipan's marine fishery resources requires the collection of fishing effort, methods used, and harvest. The CNMI boat- and shore-based creel surveys are some of the major data collection systems used by DFW to estimate the total annual boat-based participation, effort, and harvest while surveying nearshore fishery resources. These surveys were formerly known as the "CNMI offshore and inshore creel survey", but are now referred to as "boat- or shore-based" because they cover all fishing done from a boat or from shore. This is an important distinction because where the fishing activity is initiated (i.e. boat or shore) determines how that type of activity will be accounted for in the survey systems. For instance, very small boats launched from non-standard launching areas (e.g. from the back of a pickup truck on a beach) are not included in the boat-based creel survey.

The objective of the boat-based creel survey program is to quantify fishing participation, effort, and catch done from on a vessel in CNMI's waters. DFW had an early creel survey data collection program in 1984, and 1990 to 1994, however since the methods were not standardized, the data collected with that early program is not currently being used. The early program was eventually terminated due to a lack of resources. On April 2, 2000, the DFW fishery staff reinitiated the boat-based creel survey program on the island's boat-based fishery following a three year hiatus. The fishery survey collects data on the island's boating activities and interviews returning commercial and noncommercial fishermen at the three most active launching ramps/docks on the island: Smiling Cove, Sugar Dock, and Fishing Base. Essential fishery information is collected and processed from both commercial and noncommercial vessels to help

better inform management decisions. The two types of data collection programs utilized by Saipan's boat-based creel survey program include: boat-based participation count to collect participation data, and a boat-based access point survey to collect catch and effort data (through survey maps, boat logs, and interviews) at the three major boat ramp areas listed above. The data collected are then expanded at a stratum level (quarterly vs. annually, charter vs. non-charter, weekday vs. weekend, etc.) to create estimated landings by gear type for CNMI's boat-based fishery. The shore-based survey currently covers the Western Lagoon of Saipan. Some pilot surveys are being conducted on Saipan's Eastern beaches such as Laolao Bay, Obyan Beach, and Ladder Beach. Other accessible areas are not covered at this time due to existing limited resource availability and logistical constraints. With the assistance of the WPacFIN program at PIFSC, data processing software and a database were developed to process these survey data.

In May 2005, DFW fishery staff reinitiated the creel survey program for the island's shore-based fishery following a hiatus of 11 years. The Western Lagoon starts from the northwest (Wing Beach) and extends to the southwest (Agingan Point) of Saipan. This encompasses over twenty accessible and highly active shoreline access points. Saipan's shore-based creel survey is also a stratified randomized data collection program. This program collects two types of data to estimate catch and effort information in the shore-based fishery: participation count and interview. The participation count involves counting the number of people fishing on randomly selected days and their method of fishing along the shoreline. The interview involves dialoging with fishermen to determine catch, method used, length and weights of fish, species composition, catch disposition, and if any fish were not kept (i.e., bycatch). The data collected from this program have been used to expand and create annual estimated landings for the shore-based fishery in the CNMI.

In October 2018, the islands of Saipan and Tinian were directly hit by Super Typhoon Yutu. The damage inflicted by the typhoon delayed both creel surveys and collection of commercial receipt invoices. About a month after the typhoon, creel surveys were regularly conducted again, and boat-based surveys followed soon thereafter. Vendors prioritized repairing typhoon-related damages to their businesses, and the number of invoices collected decreased as a result.

From January to June 2018, there were 36 boat-based surveys scheduled. A total of 63 interviews were completed with an expanded catch estimate of 243,259 lbs. landed. The vessel/trailer participation survey is ongoing and includes all launching areas on the west coast of Saipan where all boat-based fishing occurs. For this reporting period, a total of 122 boat vessels/trailers were registered as "out fishing". During this progress period, the most common fishing methods encountered were trolling, bottomfishing, and hook and line fishing. The expanded harvest estimate for trolling was 151,270 lbs. Estimated catch for bottomfishing and hook and line gear types were 83,246 lbs. and 8,743 lbs., respectively.

In the second half of the year, from July to December 2018, there were 27 boat-based surveys scheduled. A total of 30 interviews were completed with an expanded catch estimate of 245,397 lbs. landed. The vessel/trailer participation survey is ongoing and includes all launching areas on the west coast of Saipan, where all boat-based fishing occurs. For this reporting period, a total of 104 boat vessels/trailers were registered as "out fishing". Because the same vessel may be out fishing on more than one day, this count should not be used to estimate the total number of unique fishing vessels. During this progress period, the most common fishing methods

encountered were trolling, bottomfishing and hook and line fishing. The expanded harvest estimate was 237,585 lbs. for trolling, while the estimated catch was 1,985 lbs. for bottomfishing and 2,767 lbs. for hook and line.

Consistent collection and entry of offshore data have continued. Issues with vehicle maintenance and repair are currently the biggest problems facing conducting offshore surveys. In November, a new data technician was hired to help with collection efforts.

1.1.2.2 Vendor Invoice

The DFW has been collecting fishery statistics on Saipan's commercial fishing fleet since the mid-1970s. With the assistance of the NMFS WPacFIN program, the DFW also expanded its fisheries monitoring programs to include the other two major inhabited islands in the CNMI, Rota and Tinian. The DFW's principal method of collecting domestic commercial fisheries data is a dealer invoicing system, sometimes referred to as a "trip ticket" system. The DFW provides numbered two-part invoices to all purchasers of fresh fishery products (including hotels, restaurants, stores, fish markets, and roadside vendors). Dealers then complete an invoice each time they purchase fish directly from fishers; one copy goes to the DFW and one copy goes to their records. Some advantages of this data collection method are that it is relatively inexpensive to implement and maintain, and it is fairly easy to completely cover the commercial fisheries. The DFW can also provide feedback to dealers and fishers to ensure data accuracy and continued cooperation over time.

There are some disadvantages to the trip ticket system, including: (1) dependency on non-DFW personnel to identify the catch and record the data, (2) restrictions on the types of data that can be collected, (3) required education and cooperation of all fish purchasers, and (4) limited recordings of fish actually sold to dealers. Therefore, a potentially important portion of the total landings typically goes unrecorded. Since 1982, the DFW has tried to minimize these disadvantages in several ways by (1) maintaining a close working relationship with dealers, (2) adding new dealers to their list and educating them, and (3) implementing a creel survey to help estimate total catch (including recreational and subsistence portion). The current system collects data from dealers in Saipan, where the DFW estimates more than 90 percent of all CNMI commercial landings that have been recorded in the Saipan database since 1983 is about 90 percent; however, coverage has been relatively mottled over the years. Previous volumes of FSWP reported only recorded landings, but in recent volumes, the data have been adjusted to represent 100 percent coverage and are referenced as "estimated commercial landings" in the tables and figures.

These data elements are collected for all purchases of fishery products; however, species identification is frequently identified only to a group level, especially for reef fish.

For the period of January 1, 2018 to June 30, 2018, there were 1,618 invoices collected from 27 vendors around Saipan. A total of 58,215.49 lbs. of fish valued at \$175,166.22 were recorded from the sales receipt program. For the second half of the year over the period of July 1, 2018 to December 31, 2018, there were 1,174 invoices collected from 22 vendors around the island. A total of 46,876.00 lbs. of fish valued at \$129,757.08 were recorded from the sales receipt program. Consistent, scheduled visits to collect purchase data helped increase vendor

participation. Invoice collection in the months following Super Typhoon Yutu decreased due to the community's focus on recovery.

1.1.2.3 Bio-Sampling

The bio-sampling database contains general and specific bio-data obtained from individual commercial spearfish catches landed on Saipan from six different vendors over the course of 2011. The following data was captured for each fishing trip sampled: date, fishing gear type, time/hours fished, location fished, number/names of fishers, lengths/weights of individual fish, number/weight of octopus and squid, number/carapace size/weight/sex of lobster, and whether it was boat- or shore-based fishing trip.

Although sampling effort was intended to be spread evenly among all participating vendors, smaller vendors were inherently much more difficult to sample within the time constraints allowed. Therefore, a regular sampling schedule was implemented for the island's two largest vendors that included two weekdays and one weekend day each week starting in January/February 2011. Problems encountered in sampling the smaller vendors included: more days in any given month where no fish were purchased, the work area wasn't conducive for sampling, and communication problems. The bio-sampling database focuses on nighttime (non-SCUBA) spearfishing activities. Due to vendor-imposed limitations, other gear types that typically land their catch during normal business hours were not sampled.

1.1.2.4 Exemption Netting

In 2003, the use of gill nets was prohibited in the CNMI. In 2005, the DFW decided to allow gill netting under special circumstances. Gill netting is now allowed under strict conditions provided by the DFW with their permission such that all gill netting activities are to be monitored and recorded by DFW personnel.

In 2010, a law was passed allowing for the use of gill nets for the purpose of subsistence on the island of Rota. The following year, a regulation allowing subsistence net fishing was passed for the island of Tinian.

For a majority of the permitted gillnet activities, length and weight measurements were taken at the fishing site. Fork lengths were measured in millimeters and weights were measured in grams. If time did not permit for individual measurements, then length measurements were taken for each fish and total weight was taken for each species. Length/weight ratios were used to estimate weights of sampled fish. Information has been collected for activities conducted on the island of Saipan, but no official collection of information has been collected for Rota or Tinian.

1.1.2.5 Life History

The CNMI DFW life history program began in 1996 with the redgill emperors (*Lethrinus rubrioperculatus*). Since then, sampling has been conducted on other species, including *A. lineatus*, Myriprestinae (*Myripristis violacea, M. kuntee, M. pralinea, M. bernti, M. murdjan*), *L. harak, Naso lituratus, Chlorurus sordidus*, and *C. undulatus*. Other life history programs have also developed over the past years. In collaboration with NMFS, DFW personnel collect life history information on *Scarus rubroviolaceus, Lethrinus atkinsoni*, and *Parupeneus barbarinus*

through funding provided by NOAA-NMFS. The life history survey captures biological information, including reproductive cycle, age at length, and age at maturity. The DFW is continually working to improve the understanding of reef fish life history in the CNMI through these types of programs.

1.1.2.6 Monitoring of Imported Fish

The DFW Fisheries Data Sections collect fisheries-related importation invoices from the Department of Commerce at the end of every month. The data is then entered into a ticket receipt system and reviewed prior to being sent out for compilation by PIFSC. A majority of the information entered into the system can only be identified to the family taxa.

1.1.2.7 Vessel Inventory

Little progress has been made towards the vessel inventory project, as staff were generally focused on improving inshore, offshore, and receipt data collection programs. This work is also impacted by policies of the CNMI Department of Public Safety, which manages vessel licensing. Going forward, additional emphasis will be put on improving the vessel inventory project, especially once the data technician and data manager positions are filled at the CNMI DFW.

1.1.3 Meta-Data Dashboard Statistics

The meta-data dashboard statistics describe the amount of data used or available to calculate the fishery-dependent information. Creel surveys are sampling-based systems that require a randomstratified design applied to pre-scheduled surveys. The number of sampling days, participation runs, and catch interviews can be used to determine if there are sufficient samples to run the expansion algorithm. The trends of these parameters over time may infer survey performance. Monitoring the survey performance is critical for explaining the reliability of the expanded information.

Commercial receipt book information depends on the amount of invoices submitted and the number of vendors participating in the program. Variations in these meta-data affect the commercial landing and revenue estimates.

1.1.3.1 Creel Survey Meta-Data Statistics

Calculations: Shore-based data

Interview Days: Count of the number of actual days that Creel Survey Data were collected. It's a count of the number of unique dates found in the interview sampling data (the actual sampling date data, include opportunistic interviews).

Participation Runs: Count of the number of unique occurrences of the combination of survey date and run number in the participation detail data.

Catch Interviews: Count of the number of unique occurrences of the combination of date and run number in the participation detail data/ count of unique surveyor initials and date in PAR. This is divided into two categories, interviews conducted during scheduled survey days (Regular), and opportunistic interviews (Opp.) which are collected on non-scheduled days.

Calculation: Boat-based data

Sample days: Count of the total number of unique dates found in the boat log data sampling date data.

Catch Interviews: Count of the total number of data records found in the interview header data (number of interview headers). This is divided into two categories, interviews conducted during scheduled survey days (Regular), and opportunistic interviews (Opportunistic) which are collected on non-scheduled days.

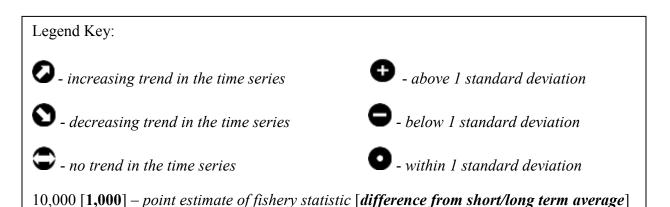
	Shore-based				Boat-based		
Year	# Interview Days	# Participation Runs	# Catch Interviews		# Sample Days	# Catch Interviews	
			Regular	Opportunistic		Regular	Opportunistic
2000					44	168	9
2001					67	285	0
2002					75	200	25
2003					90	299	40
2004					77	272	16
2005	59	157	258	42	78	417	29
2006	105	337	597	248	71	342	22
2007	127	413	601	36	62	314	1
2008	157	340	911	24	55	250	1
2009	184	324	870	24	64	241	25
2010	132	294	374	29	65	161	82
2011	119	327	388	14	67	162	87
2012	80	273	230	10	72	166	0
2013	108	277	297	2	71	191	0
2014	50	209	108	1	71	166	0
2015	44	193	83	15	57	119	2
2016	44	256	88	20	65	117	3
2017	37	241	122	57	66	120	6
2018	102	383	254	21	53	113	5
10 yr avg	90	278	281	19	65	156	21
10 yr SD	45	54	224	15	6	38	33
20 yr avg	96	287	370	39	67	216	19
20 yr SD	44	70	266	60	10	84	25

Table 1. Summary of CNMI creel survey meta-data	Table 1.	Summary	of CNMI	creel	survey	meta-data
---	----------	---------	---------	-------	--------	-----------

1.1.3.2 Commercial Receipt Book Statistics

Calculations:

Vendors: Count of the number of unique buyer codes found in the commercial purchase header data from the Commercial Receipt Book.


Invoices: Count of the number of unique invoice numbers found in the commercial header data from the Commercial Receipt Book.

Year	Number of Vendors	Total Invoices Collected
1998	52	5,369
1999	49	4,649
2000	47	6,030
2001	39	4,914
2002	32	4,759
2003	24	4,261
2004	25	3,507
2005	23	3,945
2006	21	4,002
2007	18	3,387
2008	13	3,054
2009	6	2,513
2010	5	1,612
2011	3	1,198
2012	19	1,565
2013	17	2,161
2014	15	1,665
2015	10	752
2016	16	2,100
2017	29	1,913
2018	29	2,180
10 yr avg	15	1,766
10 yr SD	9	494
20 yr avg	22	3,008
20 yr SD	12	1,418

Table 2. Summary of commercial receipt book meta-data

1.1.4 Fishery Summary Dashboard Statistics

The Fishery Summary Dashboard Statics section consolidates all fishery-dependent information comparing the most recent year with short-term (recent 10 years) and long-term (recent 20 years) average (shown bolded in [brackets]). Trend analysis of the past 10 years will dictate the trends (increasing, decreasing, or no trend). The right-most symbol indicates whether the mean of the short-term and long-term years were above, below, or within one standard deviation of the mean of the full time series.

Table 3. 2018 annual indicators for the coral reef and bottomfish fisheries describing performance relative to short-term (10-year) and long-term (20-year) averages

Fishery	Fishery statistics	Short-term (10 years)	Long-term (20 years)		
Bottomfish	Estimated catch (lbs.)				
All species caught	Boat and shore creel data estimated (expanded) total lbs. (all BF trips)	858 [▼ 98%] ♥●	858 [♥98%]		
in the BF gear	Estimated total lbs. (all species) commercial purchase data	4,048[▼ 72%] ♥●	4,048 [▼ 82%] SO		
Bottomfish management unit	Boat-based creel data Estimated (expanded) total lbs. (all BF trips)	858 [▼ 98%] ♥●	858 [♥98%] 🛇 🗢		
species only	Estimated total lbs. (all species) commercial purchase data	3,909[▼ 70%] ♥●	3,909[▼76%] �♥		
	Catch-per-unit effort (lbs./gear hours)				
	CPUE (creel data only)	0.0289[▼85%] 🖉 🖸	N/A		
	Fishing effort (only available for creel data)				
	Estimated (expanded) total bottomfish trips	96[▼74%]�●	N/A		
	Estimated total bottomfishing gear hours 1,530[▼99%] ℃ •		N/A		
	Fishing participants				
	Estimated total # of fishers that went bottomfishing 1,195[▼48%] ♥●●		N/A		
	Bycatch				
	Total number of bycatch caught	100[▼88%] �●	N/A		
	# bycatch released	N/A	N/A		

Fishery	Fishery statistics	Short-term (10 years)	Long-term (20 years)			
	# bycatch kept		N/A			
Coral Reef	Estimated catch (lbs.)					
	Boat-based creel data (expanded estimate all gears	12,958 [▼ 58%] ♥●	12,958[▼ 64%] ♥●			
	Shore-based creel (expanded estimate all gears)	13,171[▼52%] �•	N/A			
	Commercial Purchase	27,791[▼60%]	27,791 [▼ 78%] ℃ ⊖			
	Catch-per-unit-effort (lbs./ge					
	BB spear	0.1333 [▼92%] ♥ ♥	N/A			
	BB troll	0.1209[▲15%]	N/A			
	BB atulai	0.2143 [▼42%] €0	N/A			
	BB cast nets	N/A	N/A			
	SB hook and line	0.0014[▲17%]	N/A			
	SB spear	0.0773[♥27%]	N/A			
	SB cast nets	0.0404[▼49%]	N/A			
	Fishing effort (# of gear-hou					
	BB spear		N/A			
	BB troll	75,117 [▼ 48%] ℃ ⊖	N/A			
	BB atulai	96[▼87%] �♥	N/A			
	BB cast nets	N/A	N/A			
	SB hook and line	118,668[▼55%] �O	N/A			
	SB spear	2,394[▲78%] 🗢 🕈	N/A			
	SB cast nets	544[▲547%] 🗘 🕀	N/A			
	Fishing participants (# of gea					
	BB spear	1,095[▲50%]	N/A			
	BB troll	636[▼ 5%] ◯ ◯	N/A			
	BB atulai	852[▼14%] ℃ ●	N/A			
	BB cast nets	N/A	N/A			

Fishery	Fishery statistics	Short-term (10 years)	Long-term (20 years)
	SB hook and line	11,390[▼38%] ♥♥	N/A
	SB spear	1,544[▼43%] �●	N/A
	SB cast nets	1,235[▼36%] ♥♥	N/A
	Boat-based Bycatch		
	# bycatch caught	2,914[▼33%] �♥	N/A
	# bycatch released	N/A	N/A
	# bycatch kept	2,914 [▼ 33%] ♥♥	N/A
	Shore-based Bycatch		
	# bycatch caught	2,326[▼ 37%] ♥●	N/A
	# bycatch released	3[▲6%] 🗲	N/A
	# bycatch kept	2,318[▲28%]	N/A

1.1.5 Catch Statistics

The following section summarizes the catch statistics for the bottomfish and coral reef fisheries in CNMI. Estimates of catch are summarized from the creel survey and commercial receipt book data collection programs. Catch statistics provide estimates of annual harvest from the different fisheries. Estimates of fishery removals can provide proxies for the level of fishing mortality and a reference level relative to established quotas. This section also provides detailed levels of catch for fishing methods and the top species complexes harvested in the coral reef and bottomfish fisheries.

1.1.5.1 Catch by Data Stream

This section describes the estimated total catch from the shore- and boat-based creel survey programs as well as the commercial landings from the commercial receipt book system. The difference between the creel total and the commercial landings is assumed to be the non-commercial component. However, there are cases where the commercial landing may be higher than the estimated creel total of the commercial receipt book program. In this case, the commercial receipt books are able to capture the fishery better than the creel surveys.

Calculations: Estimated landings are based on all bottomfish species harvested, regardless of the gear used, for all data collection programs (e.g. shore-based creel, boat-based creel and the commercial purchase reports).

Table 4. Summary of catch (lbs.) for all species caught by bottomfishing gear from 1983-
2018 as recorded by creel surveys and the commercial purchase system

Year	Creel survey	y Estimates	Creel Total	Commercial	
Year	Shore-Based	Boat-Based	Creel I otal	Landings	
1983				16,405	
1984				24,434	
1985				24,126	
1986				18,350	
1987				32,818	
1988				44,235	
1989				19,913	
1990				8,205	
1991				5,077	
1992				6,150	
1993				8,778	
1994				18,478	
1995				28,513	
1996				40,292	
1997				26,131	
1998				34,945	
1999				41,652	
2000		78,914	78,914	28,419	
2001		29,781	29,781	42,749	
2002		26,895	26,895	30,587	
2003		13,562	13,562	24,588	
2004		33,812	33,812	33,805	
2005	214	38,336	38,550	42,667	
2006	79	39,209	39,288	19,537	
2007	648	62,430	63,078	24,904	
2008	300	23,033	23,333	26,333	
2009	140	69,460	69,600	25,221	
2010	2	58,608	58,610	15,157	
2011	556	29,044	29,600	17,159	
2012	84	137,061	137,145	11,897	
2013	1,332	22,873	24,205	18,601	
2014	166	8,284	8,450	25,001	
2015	215	10,906	11,121	6,260	
2016	36	49,534	49,570	12,455	
2017	59	46,231	46,290	8,959	
2018	299	559	858	4,048	
10 yr avg	289	43,256	43,545	14,476	

10 yr SD	380	38,053	37,927	6,843
20 yr avg	295	40,975	41,193	23,000
20 yr SD	340	30,685	30,628	11,297

Calculations: Estimated landings are based on a pre-determined list of species (Appendix A) identified as the BMUS Complex regardless of the gear used, for each data collection (shore-based creel, boat-based creel and the commercial purchase reports).

Table 5. Summary of BMUS catch (lbs.) for from 1983-2018 for creel surveys and the
commercial purchase system

Veer	Creel surve	y Estimates	Creat Tatal	Commercial	
Year	Shore-Based	Boat-Based	Creel Total	Landings	
1983				3,407	
1984				3,463	
1985				2,222	
1986				3,822	
1987				1,889	
1988				2,412	
1989				4,022	
1990				1,274	
1991				781	
1992				607	
1993				1,723	
1994				5,476	
1995				17,735	
1996				32,446	
1997				22,133	
1998				27,594	
1999				34,648	
2000		78,914	78,914	14,968	
2001		29,781	29,781	25,264	
2002		26,895	26,895	24,869	
2003		13,481	13,481	18,062	
2004		33,812	33,812	12,974	
2005	168	38,266	38,434	16,539	
2006	67	39,200	39,267	12,238	
2007	648	62,389	63,037	18,606	
2008	69	23,033	23,102	18,387	
2009	140	69,447	69,587	20,419	
2010	2	58,608	58,610	14,729	
2011	556	29,044	29,600	16,931	
2012	84	136,769	136,853	11,747	

2013	1,332	22,733	24,065	17,770
2014	166	8,284	8,450	19,333
2015	215	10,906	11,121	4,197
2016	36	49,331	49,367	12,260
2017	59	46,231	46,290	8,918
2018	299	559	858	3,909
10 yr avg	289	43,191	43,480	13,021
10 yr SD	380	37,984	37,858	5,615
20 yr avg	274	40,931	41,133	16,338
20 yr SD	347	30,641	30,591	6,911

Calculations: Estimated landings are based on a pre-determined list of species (Appendix A) identified as the CREMUS Complex regardless of the gear used, for each data collection (shore-based creel, boat-based creel and the commercial purchase reports). It is required to finalize the CREMUS list to use for Creel and commercial landings and verify non-overlap between Bottomfish Complex and CREMUS. It is also required to verify all shallow bottomfish are not included in CREMUS list.

Vara	Creel surve	y Estimates	Carrel Tatal	Commercial	
Year	Shore-Based	Boat-Based	Creel Total	Landings	
1983				167,816	
1984				215,326	
1985				191,359	
1986				206,054	
1987				190,747	
1988				224,821	
1989				345,519	
1990				259,846	
1991				143,921	
1992				188,622	
1993				193,673	
1994				253,053	
1995				210,842	
1996				218,936	
1997				244,917	
1998				274,227	
1999				227,245	
2000		84,643	84,643	236,025	
2001		33,239	33,239	235,432	
2002		34,766	34,766	223,426	

Table 6. Summary of CREMUS catch (lbs.) from 1983-2018 for creel surveys and the commercial purchase system

2003		38,551	38,551	147,500
2004		27,698	27,698	127,517
2005	52,367	37,204	89,571	181,261
2006	55,657	42,893	98,550	176,349
2007	42,626	44,556	87,182	148,110
2008	43,380	64,320	107,700	160,542
2009	37,461	70,087	107,548	125,404
2010	23,425	49,505	72,930	89,567
2011	20,049	59,218	79,267	95,087
2012	19,069	49,401	68,470	68,158
2013	77,232	17,306	94,538	77,120
2014	8,541	15,482	24,023	75,062
2015	20,161	10,723	30,884	41,832
2016	40,531	17,990	58,521	56,192
2017	13,746	8,990	22,736	36,049
2018	13,171	12,958	26,129	27,791
10 yr avg	27,339	31,166	58,505	69,226
10 yr SD	19,217	21,962	29,532	28,415
20 yr avg	23,371	35,977	59,347	127,783
20 yr SD	22,116	22,055	32,538	67,750

1.1.5.2 Expanded catch estimates by fishing methods

Catch information is provided for the top shore-based and boat-based fishing methods that comprises a majority of the annual catch.

Calculations: The creel survey catch time series are the sum of the estimated weight for selected gear in all strata for all species (except for trolling, which exclude PMUS as well as any other pelagic species complex).

Year	Shore-Based methods			Boat-Based Methods						
y ear	H&L	Spear	Cast Net	Bottomfish	Spear	Troll*	Atulai	Cast net		
2005	130	259	50	3,231	12	34,575	520	2		
2006	262	320	114	1,802	91	29,504	340	23		
2007	203	74	110	2,220	105	28,464	482	0		
2008	335	161	65	914	197	20,080	263	48		
2009	295	235	68	1,974	113	13,147	407	78		
2010	105	102	93	1,353	19	14,592	74	13		
2011	136	78	18	1,521	6	10,589	152	33		
2012	93	40	36	2,807	1	17,921	128	0		
2013	170	94	17	1,324	53	19,814	98	0		
2014	55	0	9	299	16	16,835	99	0		

 Table 7. Expanded CNMI creel survey catch estimates (lbs.) from 2005-2018

2015	27	123	10	470	81	15,491	76	0
2016	25	370	10	1,388	0	8,202	0	0
2017	108	82	22	1,046	153	14,131	0	0
2018	170	185	50	53	6	10,877	18	0
10 yr avg	118	131	33	1,224	45	14,160	105	12
10 yr SD	77	102	27	777	51	3,395	112	24
20 yr avg	151	152	48	1,457	61	18,159	190	14
20 yr SD	92	105	36	875	61	7,480	173	23

*Excluding pelagic species

1.1.5.3 Top species in the catch for the boat and shore-based fisheries

Catch time series can act as indicators of fishery performance. Variations in the catch can be attributed to various factors, and there is no single explanatory variable for the observed trends. The ten species groups in the shore and boat-based catch records from the coral reef fishery make up a majority of the total annual catches.

Calculations: Catch by species complex is tallied directly from the boat-based expanded species composition data combining all gear types and species for all strata.

The averages for the table below were calculated from catch estimates for the entire time series across each of the CREMUS groupings. The average catch for each grouping is ranked from the highest to lowest. The dominant groups that make up more than half of the total annual catch are reported.

Calculations: Catch by species complex is tallied directly from the boat-based expanded species composition data combining all gear types and species, for all strata.

The averages were for the table below was calculated from catch estimates from the entire time series for each of the CREMUS grouping. The average catch is ranked from the highest to lowest catch. The dominant groups that make up more than 60% of the catch are reported.

						Roat-Rase	d Estimated	Pounds				
Year	Bottomfish	BMUS	Emperors	Jacks	Atulai	Grouper	Snapper	Surgeonfish	Parrotfish	Mullet	Squirrelfish	Rudderfish
2000	82,358	82,358	34,850	14,242	967	2,035	2,193	3,648	1,266	176	99	0
2001	33,938	33,938	9,774	3,094	4,456	1,156	623	5,569	1,453	0	69	13
2002	41,651	41,651	9,946	5,904	613	260	645	3,831	2,032	818	879	0
2003	17,319	17,238	1,339	10,958	13,579	883	240	3,924	935	0	2,030	265
2004	37,792	37,792	3,675	11,215	1,008	1,186	1,020	2,153	1,306	0	503	600
2005	41,410	41,340	3,242	17,733	0	1,617	2,282	1,722	776	0	47	925
2006	42,118	42,109	8,086	8,700	2,932	1,336	590	4,260	1,792	0	340	235
2007	77,315	77,274	9,934	4,280	7,336	2,424	2,716	3,948	2,778	0	4,391	985
2008	23,633	23,633	15,785	6,939	14,039	1,025	595	5,572	4,378	0	1,104	520
2009	74,883	74,870	18,669	2,197	20,622	3,501	548	7,506	3,910	0	635	3,189
2010	62,529	62,529	10,980	12,847	6,195	745	1,430	3,934	1,364	0	780	0
2011	32,552	32,552	15,534	10,238	7,847	5,160	178	4,016	205	0	542	3,715
2012	137,118	136,826	16,418	974	14,438	4,231	123	974	1,147	0	1,150	88
2013	23,068	22,928	5,221	1,400	720	1,011	64	955	60	0	2	175
2014	8,284	8,284	4,638	5,161	330	8	37	2,063	695	0	236	0
2015	10,906	10,906	1,436	1,037	111	2,068	325	4,218	277	0	345	127
2016	49,534	49,330	1,689	9,467	0	47	194	0	0	0	57	0
2017	46,231	46,231	691	2,219	3,122	0	0	0	17	0	4	0
2018	559	559	8,356	855	573	209	30	1,149	0	0	0	0
10 yr avg	44,502	44,566	8,363	4,640	5,396	1,698	293	2,482	768	0	375	729
10 yr SD	38,441	38,507	6,360	4,305	6,732	1,840	410	2,271	1,148	0	374	1,368
20 yr avg	44,334	44,379	9,488	6,814	5,205	1,521	728	3,129	1,284	52	695	570
20 yr SD	31,324	31,365	8,084	4,964	6,052	1,410	810	1,973	1,233	185	1,010	1,037

Table 8. Catch for top species complexes in CNMI boat-based creel data from 2000-2018

V					Shore-bas	sed Estimat	ted Pounds				
Year	Jacks	Emperors	Rabbitfish	Surgeonfish	Goatfish	Atulai	Parrotfish	Mollusks	Mullet	Wrasse	Rudderfish
2005	7,482	16,943	5,619	12,378	8,822	631	5,261	14,262	6,172	4,721	145
2006	12,487	18,142	4,771	16,613	14,981	8,990	7,228	2,072	7,380	3,887	1,004
2007	7,833	16,551	3,982	3,428	3,605	9,992	3,978	8,025	8,321	3,328	360
2008	26,271	12,850	3,209	8,178	5,568	4,821	10,751	325	3,878	2,534	52
2009	14,409	13,502	2,723	10,185	7,539	1,124	6,471	2,734	4,419	2,327	3,529
2010	3,393	3,315	659	2,196	1,697	26,130	1,484	0	1,981	1,296	155
2011	10,958	5,234	504	4,204	1,378	1,176	1,394	0	2,702	1,103	87
2012	7,275	3,005	9,593	472	3,755	303	368	3,588	2,487	852	0
2013	8,239	8,902	12,715	33,136	38,353	11,033	23,290	0	1,052	4,120	2,286
2014	8,233	2,513	55	229	182	73	0	0	742	42	1,354
2015	2,096	6,226	6,855	6,114	5,529	320	7,471	0	844	387	400
2016	3,947	6,829	3,969	5,394	2,851	0	13,342	0	616	0	0
2017	12,046	1,307	926	2,819	1,006	0	3,065	2,370	1,203	267	1,250
2018	1,256	3,020	2,245	2,038	3,718	1,767	8,176	182	537	40	1,464
10 yr avg	7,185	5,385	6,679	4,024	6,601	4,193	6,506	887	1,658	1,043	1,053
10 yr SD	4,221	3,486	9,258	4,105	10,791	7,967	6,895	1,346	1,180	1,239	1,111
20 yr avg	8,995	8,453	7,670	4,130	7,070	4,740	6,591	2,397	3,024	1,779	863
20 yr SD	6,125	5,772	8,397	3,506	9,436	7,072	5,986	3,944	2,539	1,622	1,005

Table 9. Catch for top species complexes in CNMI shore-based creel data from 2000-2018

1.1.6 Catch-per-Unit-Effort (CPUE) Statistics

This section summarizes the estimates for CPUE in the boat- and shore-based fisheries. The boat-based fisheries include the bottomfishing (handline gear), spearfishing (snorkel), troll, atulai nets, and cast nets, which comprise 84% of the total catch. Trolling is primarily a pelagic fishing method but also catches coral reef fishes like jacks and gray jobfish. The shore-based fisheries include the hook-and-line, spearfishing and cast nets, which comprise 99% of the total coral reef fish catch. CPUE is reported as pounds per gear-hour for the shore-based fishery, and pounds per fishing trip in the boat-based fishery.

Calculations: CPUE is calculated from interview data by gear type using $\sum \operatorname{catch} / \sum$ (hours fished*number of fishers) for boat based and $\sum \operatorname{catch} / \sum$ (hours fished*number of gears used) for shore based. If the value is blank (empty), then there was no interview collected for that method. Landings from interviews without fishing hours are excluded from the calculations.

Veen	Shore-Based	l Gear CPUE (lbs./gear hour)
Year	H&L	Spear	Cast Net
2005	0.0009	0.0654	0.0321
2006	0.0002	0.0434	0.0158
2007	0.0003	0.0705	0.0340
2008	0.0002	0.0658	0.0074
2009	0.0002	0.0623	0.0280
2010	0.0004	0.0567	0.1771
2011	0.0005	0.0556	0.0557
2012	0.0004	0.0465	0.1000
2013	0.0009	0.1302	0.0833
2014	0.0024	0.0000	0.1500
2015	0.0017	0.1538	0.1042
2016	0.0020	0.2864	0.0526
2017	0.0016	0.1911	0.0404
2018	0.0014	0.0773	0.0058
10 yr avg	0.0012	0.1060	0.0797
10 yr SD	0.0007	0.0807	0.0514
20 yr avg	0.0009	0.0932	0.0633
20 yr SD	0.0007	0.0714	0.0510

Table 10. CPUE for top fishing methods in CNMI shore-based fisheries from 2005-2018

Veer	Boat-	Boat-Based Gear CPUE (lbs./gear hours)								
Year	Bottomfishing	Spear	Troll	Atulai	Cast Net					
2000	0.1102	2.3929	0.0837	0.1326	0.0000					
2001	0.0301	1.4844	0.0588	0.1067	0.0000					
2002	0.0485	3.9000	0.0608	0.1079	0.0000					

2004	0.0307	0.0839	0.0568	0.0480	0.0000
2005	0.0137	1.0000	0.0372	0.0704	0.1250
2006	0.0126	0.1071	0.0545	0.0437	1.1500
2007	0.0289	0.3182	0.0726	0.0311	0.0000
2008	0.0125	0.0533	0.0718	0.1927	0.6667
2009	0.0069	0.1495	0.0745	0.0755	5.5714
2010	0.0022	3.1667	0.1065	0.2284	1.4444
2011	0.0021	1.0000	0.0855	0.6609	0.3929
2012	0.3558	0.2500	0.1113	0.0914	0.0000
2013	0.1445	0.3155	0.0982	0.2917	0.0000
2014	0.1286	3.2000	0.0866	0.5789	0.0000
2015	0.2318	27.0000	0.1594	0.7917	0.0000
2016	0.3541	0.0000	0.0893	0.0000	0.0000
2017	0.6671	1.1333	0.1184	0.0000	0.0000
2018	0.0289	0.3333	0.1209	0.2143	0.0000
10 yr avg	0.1922	4.0609	0.1051	0.3666	1.8522
10 yr SD	0.2049	8.1883	0.0232	0.2551	2.2113
20 yr avg	0.1181	2.5549	0.0834	0.2291	1.1945
20 yr SD	0.1690	6.0490	0.0301	0.2228	1.6392

1.1.7 Effort Statistics

This section summarizes the effort trends in the coral reef and bottomfish fishery. Fishing effort trends provide insights on the level of fishing pressure through time. Effort information is provided for the top shore-based and boat-based fishing methods that comprise a majority of the annual catch.

Calculations: Effort estimates (hours) are generated by summing the effort data collected from interviews by gear type. For shore-based estimates, data collection started in 2005.

		Estimated Effort by Gear Type										
Year	Shore-Ba	sed Gear	Hours	Boat-Based Gear Hours								
1 641	H&L		Cast Net	Bottom	Spear	Troll	Atulai	Cast Net				
2000				15,194	21	131,472	2,379	0				
2001				26,076	16	475,304	2,400	0				
2002				23,547	10	286,520	1,888	0				
2003				16,492	3,420	841,750	918	5				
2004				40,633	666	462,027	4,620	0				
2005	143,992	3,960	1,560	230,736	12	899,028	7,062	16				
2006	1,145,508	7,380	7,216	145,722	918	505,362	7,020	8				

Table 12. Effort estimates in CNMI coral reef and bottomfish fisheries from 2000-2018

2007	677,265	1,050	3,233	70,168	352	359,047	14,602	6
2008	1,464,036	2,448	8,736	71,463	3,780	261,960	1,521	36
2009	1,494,570	3,774	2,432	305,064	714	173,600	5,159	7
2010	238,815	1,800	525	658,504	6	136,413	297	9
2011	286,144	1,403	323	869,240	6	117,576	230	56
2012	216,905	860	360	8,211	4	169,278	1,200	0
2013	182,684	722	204	9,480	168	212,346	392	0
2014	23,023	2	60	2,625	10	216,425	171	3
2015	15,624	800	96	2,340	6	107,514	96	0
2016	12,402	1,292	190	5,376	0	99,828	0	0
2017	67,081	429	544	1,568	81	124,845	0	0
2018	118,668	2,394	8,667	1,530	12	75,117	96	0
10 yr avg	265,592	1,348	1,340	186,394	101	143,294	764	8
10 yr SD	420,380	1,038	2,529	305,785	211	45,362	1,502	16
20 yr avg	434,766	2,022	2,439	131,788	537	297,653	2,634	8
20 yr SD	518,328	1,869	3,161	234,001	1,087	235,198	3,616	14

1.1.8 Participants

This section summarizes the estimated number of participants in each fishery. The information presented here can be used in the impact analysis of potential amendments in the FEPs associated with the bottomfish and coral reef fisheries. The trend in the number of participants over time can also be used as an indicator for fishing pressure.

Calculations: Estimated number of participants is calculated by using and average number of fishers out fishing per day multiplied by the numbers of dates in the calendar year by gear type. The total is a combination of weekend and weekday stratum estimates.

Veer	Botto	mfish		Coral Re	ef Boat-Based		Cora	l Reef Shor	e-Based
Year	# Fishers	# Gears	Spear	Troll	Atulai	Cast Net	H&L	Spear	Cast Net
2000	1,161	1,119	1,464	803	1,577	0			
2001	993	898	1,460	806	1,095	0			
2002	1,259	1,287	730	851	1,156	0			
2003	1,374	1,331	816	930	913	730			
2004	1,319	1,236	993	793	1,313	0			
2005	1,369	1,342	1,095	850	1,007	730	43,884	7,058	4,798
2006	1,130	1,155	830	870	973	1,825	49,116	8,448	5,251
2007	883	807	782	800	1,186	1,095	41,127	6,554	3,521
2008	1,888	1,843	848	723	1,423	976	58,569	5,270	4,547
2009	3,043	3,224	821	671	1,345	730	42,908	4,137	2,771
2010	6,375	6,727	730	660	876	1,095	17,505	3,039	2,145
2011	6,246	7,581	730	758	913	730	24,927	2,049	3,134
2012	690	718	366	738	1,281	0	17,198	2,751	2,075
2013	728	753	728	655	874	0	22,960	2,870	2,728
2014	666	751	365	626	1,095	730	13,601	2,452	1,656
2015	678	782	365	641	730	0	8,374	2,769	817
2016	641	878	0	633	0	0	11,804	3,225	1,544
2017	786	786	1,369	650	0	0	13,376	2,108	1,290
2018	1,195	995	1,095	636	852		11,390	1,544	1,235
10 yr avg	2,320	2,105	730	667	996	821	18,404	2,694	1,940
10 yr SD	2,529	2,213	325	43	206	158	9,527	683	722
20 yr avg	1,801	1,707	866	742	1,095	960	26,910	3,877	2,679
20 yr SD	1,924	1,670	327	93	227	341	16,073	2,049	1,362

Table 13. Number of fishermen participating in the CNMI bottomfish fishery and number of gears in the CNMI coral reeffishery from 2000-2018

V	Botto	mfish		Coral Ree	f Boat-Based		Cor	al Reef Shore	-Based
Year	# Gears	# Trips	Spear	Troll	Atulai	Cast Net	H&L	Cast Net	Spear
2000	366	441	10	903	133	0			
2001	365	425	6	1,401	119	0			
2002	365	185	5	976	83	0			
2003	365	231	112	1,913	53	3			
2004	366	390	37	934	112	0			
2005	365	824	2	531	53	2	45,558	4,715	7,058
2006	365	843	30	553	73	2	52,248	5,160	8,448
2007	365	695	33	793	200	4	42,591	3,479	6,872
2008	366	592	57	377	50	5	60,468	4,482	5,167
2009	365	587	7	101	27	0	44,638	2,744	4,137
2010	365	421	0	35	2	1	18,980	2,086	3,069
2011	365	452	0	27	1	1	26,575	3,054	2,036
2012	366	320	14	1,916	215	0	18,388	2,236	2,751
2013	364	292	85	1,711	85	0	24,536	2,649	2,870
2014	365	211	21	2,868	94	10	14,062	1,656	2,410
2015	365	173	24	2,409	97	0	8,828	817	2,769
2016	366	113	0	1,433	0	0	12,455	1,733	3,637
2017	365	88	117	2,646	0	0	13,594	1,327	2,145
2018	365	96	24	1,789	97	0	11,688	1,349	1,567
10 yr avg	275	365	29	1,494	62	1	19,374	1,965	2,739
10 yr SD	161	1	38	1,029	66	3	9,988	678	722
20 yr avg	388	365	31	1,227	79	1	28,186	2,678	3,924
20 yr SD	228	1	36	855	60	2	16,700	1,306	2,066

1.1.9 Bycatch Estimates

This section focuses on MSA § 303(a)(11), which requires that all FMPs establish a standardized reporting methodology to assess the amount and type of bycatch occurring in the fishery, and include conservation and management measures that, to the extent practicable, minimize bycatch and bycatch mortality. The MSA § 303(a)(11) standardized reporting methodology is commonly referred to as a "Standardized Bycatch Reporting Methodology" (SBRM) and was added to the MSA by the Sustainable Fisheries Act of 1996 (SFA). The Council implemented omnibus amendments to FMPs in 2003 to address MSA bycatch provisions and established SBRMs at that time.

Calculations: The number caught is the sum of the total number of individuals found in the raw data including bycatch. The number kept is the total number of individuals in the raw data that are not marked as bycatch. The number released is bycatch caught minus the number of bycatch kept. Percent bycatch is the sum of all bycatch divided by the total catch.

Veen	Boat-Base	d Non-Botto	omfishing By	catch
Year	# Caught	Kept	Released	% Bycatch
2000	3,089	3,086	3	0.0010
2001	5,732	5,731	1	0.0002
2002	4,885	4,885	0	0.0000
2003	8,785	8,785	0	0.0000
2004	5,717	5,717	0	0.0000
2005	6,772	6,772	0	0.0000
2006	6,761	6,759	2	0.0003
2007	6,683	6,683	0	0.0000
2008	4,463	4,463	0	0.0000
2009	3,792	3,792	0	0.0000
2010	3,462	3,462	0	0.0000
2011	2,515	2,515	0	0.0000
2012	3,963	3,963	0	0.0000
2013	3,732	3,732	0	0.0000
2014	2,600	2,600	0	0.0000
2015	2,693	2,693	0	0.0000
2016	1,812	1,812	0	0.0000
2017	2,632	2,632	0	0.0000
2018	1,940	1,940	0	0.0000
10 yr avg	2,914	2,914	0	0.0000
10 yr SD	734	734	0	0.0000
20 yr avg	4,317	4,317	0	0.0001
20 yr SD	1,898	1,898	1	0.0002

Table 14. Bycatch estimates in CNMI non-bottomfishing boat-based fisheries from 2000-2018

	Boat-B	ased Botto	mfishing Byc	catch
Year	# Caught	Kept	Released	% Bycatch
2000	818	797	21	0.0257
2001	931	930	1	0.0011
2002	904	890	14	0.0155
2003	877	841	36	0.0410
2004	1,379	1,359	20	0.0145
2005	3,225	3,221	4	0.0012
2006	1,845	1,842	3	0.0016
2007	2,110	2,110	0	0.0000
2008	1,158	1,158	0	0.0000
2009	1,779	1,779	0	0.0000
2010	1,474	1,474	0	0.0000
2011	1,734	1,734	0	0.0000
2012	782	782	0	0.0000
2013	857	857	0	0.0000
2014	216	216	0	0.0000
2015	196	196	0	0.0000
2016	721	721	0	0.0000
2017	314	314	0	0.0000
2018	100	100	0	0.0000
10 yr avg	817	817	0	0.0000
10 yr SD	610	610	0	0.0000
20 yr avg	1,127	1,122	5	0.0053
20 yr SD	757	757	10	0.0109

Table 15. Bycatch estimates in the CNMI bottomfish fishery from 2000-2018

	Shore-Based Bycatch					
Year	# Caught	Kept	Released	% Bycatch		
2000						
2001						
2002						
2003						
2004						
2005	3,170	3,104	66	0.0208		
2006	6,015	5,987	28	0.0047		
2007	2,670	2,660	10	0.0037		
2008	7,142	7,135	7	0.0010		

2009	4,412	4,411	1	0.0002
2010	1,839	1,839	0	0.0000
2011	2,601	2,601	0	0.0000
2012	1,466	1,465	1	0.0007
2013	2,007	2,001	6	0.0030
2014	544	544	0	0.0000
2015	687	687	0	0.0000
2016	723	723	0	0.0000
2017	1,450	1,447	3	0.0021
2018	2,326	2,318	8	0.0034
10 yr avg	1,806	1,804	2	0.0009
10 yr SD	1,095	1,095	3	0.0013
20 yr avg	2,647	2,637	9	0.0028
20 yr SD	1,907	1,901	17	0.0052

1.1.10 Number of Federal Permit Holders

The Code of Federal Regulations (CFR), Title 50, Part 665 requires the following Federal permits for fishing in the exclusive economic zone (EEZ) under the Mariana FEP:

1.1.10.1 Northern Mariana Island Bottomfish Permit

Regulations require this permit for any vessel commercially fishing for, landing, or transshipping bottomfish management unit species (MUS) or bottomfish ecosystem component species (ECS) in the EEZ around the Commonwealth of the Northern Mariana Islands (CNMI). Commercial fishing is also prohibited within the boundaries of the Islands Unit of the Marianas Trench Marine National Monument.

1.1.10.2 Special Coral Reef Ecosystem Permit

Regulations require the coral reef ecosystem special permit for anyone fishing for coral reef ECS in a low-use marine protected area (MPA), fishing for species on the list of Potentially Harvested Coral Reef Taxa, or using fishing gear not specifically allowed in the regulations. NMFS will make an exception to this permit requirement for any person issued a permit to fish under any fishery ecosystem plan who incidentally catches CNMI coral ECS while fishing for bottomfish MUS, crustacean ECS, western Pacific pelagic MUS, precious coral, or seamount groundfish. Regulations require a transshipment permit for any receiving vessel used to land or transship potentially harvested coral reef taxa, or any coral reef ECS caught in a low-use MPA.

1.1.10.3 Western Pacific Precious Corals Permit

Regulations require this permit for anyone harvesting or landing black, bamboo, pink, red, or gold corals in the EEZ in the western Pacific.

1.1.10.4 Western Pacific Crustaceans Permit (Lobster or Deepwater Shrimp)

Regulations require a permit by the owner of a U.S. fishing vessel used to fish for lobster or deepwater shrimp in the EEZ around American Samoa, Guam, Hawaii, and the Pacific Remote

Islands Areas, and in the EEZ seaward of 3 nautical miles of the shoreline of the Northern Mariana Islands.

There is no record of special coral reef or precious coral fishery permits issued for the EEZ around Northern Mariana Islands since 2007. Table 17 provides the number of permits issued for CNMI fisheries between 2008 and 2018. Historical data are from the PIFSC, and 2018 data are from the PIRO Sustainable Fisheries Division permits program as of February 27, 2019.

Table 17. Number of federal permits holders for the CNMI crustacean and bottomfishfisheries from 2009-2018

CNMI Fisheries	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Lobster	4*	0	0	0	0	0	0	1**	0	1**
Shrimp	0	2*	1*	0	0	0	0	1	0	0
Bottomfish	2	13	10	13	5	6	7	17	20	13

* Permits apply to multiple areas and may include American Samoa, Guam, CNMI, and PRIA. **Area 5 CNMI and Guam.

1.1.11 Status Determination Criteria

1.1.11.1 Bottomfish Fishery

Overfishing criteria and control rules are specified and applied to individual species within the multi-species stock whenever possible. When this is not possible, they are based on an indicator species for the multi-species stock. It is important to recognize that individual species would be affected differently based on this type of control rule, and it is important that for any given species, fishing mortality does not currently exceed a level that would result in excessive depletion of that species. No indicator species are used for the bottomfish multi-species stock complexes and the coral reef species complex. Instead, the control rules are applied to each stock complex as a whole.

The MSY control rule is used as the maximum fishing mortality threshold (MFMT). The MFMT and minimum stock size threshold (MSST) are specified based on the recommendations of Restrepo et al. (1998) and both are dependent on the natural mortality rate (M). The value of M used to determine the reference point values are not specified in this document. The latest estimate, published annually in the SAFE report, is used and the value is occasionally re-estimated using the best available information. The range of M among species within a stock complex is taken into consideration when estimating and choosing the M to be used for the purpose of computing the reference point values.

In addition to the thresholds MFMT and MSST, a warning reference point, B_{FLAG} , is specified at some point above the MSST to provide a trigger for consideration of management action prior to B reaching the threshold. MFMT, MSST, and B_{FLAG} are specified as indicated in Table 18.

Table 18. Overfishing threshold specifications for the BMUS in CNMI

MFMT	MSST	\mathbf{B}_{FLAG}

$F(B) = \frac{F_{MSY}B}{c B_{MSY}} \text{ for } B \le c B_{MSY}$ $F(B) = F_{MSY} \text{ for } B > c B_{MSY}$	c B _{MSY}	B _{MSY}		
where $c = \max(1-M, 0.5)$				

Standardized values of fishing effort (E) and catch-per-unit-effort (CPUE) are used as proxies for F and B, respectively, so E_{MSY} , $CPUE_{MSY}$, and $CPUE_{FLAG}$ are used as proxies for F_{MSY} , B_{MSY} , and B_{FLAG} , respectively.

In cases where reliable estimates of $CPUE_{MSY}$ and E_{MSY} are not available, they would be estimated from catch and effort times series, standardized for all identifiable biases. $CPUE_{MSY}$ would be calculated as half of a multi-year average reference CPUE, called $CPUE_{REF}$. The multiyear reference window would be objectively positioned in time to maximize the value of $CPUE_{REF}$. E_{MSY} would be calculated using the same approach or, following Restrepo et al. (1998), by setting E_{MSY} equal to E_{AVE} , where E_{AVE} represents the long-term average effort prior to declines in CPUE. When multiple estimates are available, the more precautionary one is used.

Since the MSY control rule specified here applies to multi-species stock complexes, it is important to ensure that no particular species within the complex has a mortality rate that leads to excessive depletion. In order to accomplish this, a secondary set of reference points is specified to evaluate stock status with respect to recruitment overfishing. A secondary "recruitment overfishing" control rule is specified to control fishing mortality with respect to that status. The rule applies only to those component stocks (species) for which adequate data are available. The ratio of a current spawning stock biomass proxy (SSBP_t) to a given reference level (SSBP_{REF}) is used to determine if individual stocks are experiencing recruitment overfishing. SSBP is CPUE scaled by percent mature fish in the catch. When the ratio SSBP_t/SSBP_{REF}, or the "SSBP ratio" (SSBPR) for any species drops below a certain limit (SSBPR_{MIN}), that species is considered to be recruitment overfished and management measures will be implemented to reduce fishing mortality on that species. The rule applies only when the SSBP ratio drops below the SSBPR_{MIN}, but it will continue to apply until the ratio achieves the "SSBP ratio recovery target" (SSBPR_{TARGET}), which is set at a level no less than SSBP_{RMIN}. These two reference points and their associated recruitment overfishing control rule, which prescribe a target fishing mortality rate (F_{RO-REBUILD}) as a function of the SSBP ratio, are specified as indicated in Table 19. Again, E_{MSY} is used as a proxy for F_{MSY} .

Table 19. Rebuilding control r	ules for the BMUS in CNMI
--------------------------------	---------------------------

F _{RO-REBUILD}	SSBPR _{MIN}	SSBPR _{target}
$F(SSBPR) = 0$ for SSBPR ≤ 0.10		
$\begin{split} F(SSBPR) = 0.2 \ F_{\text{MSY}} & \text{for } 0.10 < SSBPR \leq SSBPR_{\text{MIN}} \\ F(SSBPR) = 0.4 \ F_{\text{MSY}} & \text{for } SSBPR_{\text{MIN}} < SSBPR \leq SSBPR_{\text{target}} \end{split}$	0.20	0.30

1.1.11.2 Coral Reef Fishery

Available biological and fishery data are poor for all coral reef ecosystem management unit species in the Mariana Islands. There is scant information on the life histories, ecosystem dynamics, fishery impact, community structure changes, yield potential, and management reference points for many coral reef ecosystem species. Additionally, total fishing effort cannot be adequately partitioned between the various management unit species (MUS) for any fishery or area. Biomass, maximum sustainable yield, and fishing mortality estimates are not available for any single MUS. Once these data are available, fishery managers can establish limits and reference points based on the multi-species coral reef ecosystem as a whole.

The MSY control rule should be applied to the individual species in a multi-species stock when possible. When this is not possible, MSY may be specified for one or more species; these values can be used as indicators for the multi-species stock's MSY.

Individual species that are part of a multi-species complex will respond differently to an OYdetermined level of fishing effort (F_{OY}). Thus, for a species complex that is fished at F_{OY} , managers still must track individual species' mortality rates in order to prevent species-specific population declines that would lead to depletion.

For the coral reef fishery, the multi-species complex as a whole is used to establish limits and reference points for each area. Available data for a particular species are used to evaluate the status of individual MUS stocks in order to prevent recruitment overfishing when possible. When better data and the appropriate multi-species stock assessment methodologies become available, all stocks will be evaluated independently, without proxy.

Establishing Reference Point Values

Standardized values of catch per unit effort (CPUE) and effort (E) are used to establish limit and reference point values, which act as proxies for relative biomass and fishing mortality, respectively. Limits and reference points are calculated in terms of $CPUE_{MSY}$ and E_{MSY} included in Table 20.

Value	Proxy	Explanation
MaxFMT (F _{MSY})	E _{MSY}	0.91 CPUE _{MSY}
F _{OY}	0.75 E _{MSY}	suggested default scaling for target
B _{MSY}	CPUE _{MSY}	operational counterpart
B _{OY}	1.3 CPUE _{MSY}	simulation results from Mace (1994)
MinSST	0.7 CPUE _{MSY}	suggested default (1-M)B _{MSY} with M=0.3*
B _{FLAG}	0.91 CPUE _{MSY}	suggested default (1-M)B _{OY} with M=0.3*

Table 20. Status determination	criteria for CNMI	CREMUS using	CPUE based proxies
I abit 20. Status acter mination		CIVENIOS using	CI CL Dasca provies

When reliable estimates of E_{MSY} and $CPUE_{MSY}$ are not available, they are generated from time series of catch and effort values, standardized for all identifiable biases using the best available

analytical tools. $CPUE_{MSY}$ is calculated as one-half a multi-year moving average reference CPUE (CPUE_{REF}).

1.1.11.3 Current Stock Status

Bottomfish

Biological and other fishery data are poor for all bottomfish species in the Mariana Archipelago. Generally, data are only available on commercial landings by species and catch-per-unit-effort (CPUE) for the multi-species complexes as a whole. At this time it is not possible to partition these effort measures among the various bottomfish MUS. The most recent stock assessment update (Yau et al., 2015) for the CNMI bottomfish management unit species complex (comprised of 17 species of shallow and deep species of snapper, grouper, jacks, and emperors) was based on estimate of total catch, an abundance index derived from the nominal CPUE generated from the creel surveys, and a fishery independent point estimate of MSY from the Our Living Oceans Report (Humphreys and Moffitt, 1999; Moffitt and Humphreys, 2009). The assessment utilized a state-space surplus production model with explicit process and observation error terms (Meyer and Millar, 1999). Determinations of overfishing and overfished status can then be made by comparing current biomass and harvest rates to MSY level reference points. To date, the CNMI BMUS is not subject to overfishing and is not overfished (Table 21).

Parameter	Value	Notes	Status
MSY	173.1 ± 32.19	Expressed in 1000 lbs. (± std. error)	
H ₂₀₁₃	0.022	Expressed in percentage	
H _{MSY}	0.261 ± 0.063	Expressed in percentage (\pm std. error)	
H/H _{MSY}	0.088		No overfishing occurring
B ₂₀₁₃	1,262	Expressed in thousand pounds	
B _{MSY}	683.5 ± 126.7	Expressed in 1000 lbs. (± std. error)	
B/ B _{MSY}	1.85		Not overfished

Table 21. Stock assessment parameters for the CNMI BMUS complex (Yau et al., 2015).

Coral Reef

The application of the SDCs for the management unit species in the coral reef fisheries is limited due to various challenges. First, the thousands of species included in the coral reef MUS makes the SDC and status determination impractical. Second, the CPUE derived from the creel survey is based on the fishing method and there is no species-specific CPUE information available. In order to allocate the fishing method level CPUE to individual species, the catch data (the value of catch is derived from CPUE hence there is collinearity) will have to be identified to species level and CPUE will be parsed out by species composition. The third challenge is that there is very little species level identification applied to the creel surveys. There has been no attempt to estimate MSY for the coral reef MUS until the 2007 re-authorization of MSA that requires the Council to specify ACLs for species in the FEPs.

For ACL specification purposes, MSYs in the coral reef fisheries are determined by using the Biomass-Augmented Catch-MSY approach (Sabater and Kleiber, 2014). This method estimates MSY using plausible combination rates of population increase (denoted by r) and carrying capacity (denoted by k) assumed from the catch time series, resilience characteristics (from FishBase), and biomass from existing underwater census surveys done by PIFSC. This method was applied to species complexes grouped by taxonomic families. The most recent MSY estimates are found in Table 22. The SSC utilized the MSYs for the coral reef MUS complexes as the OFLs.

Coral Reef MUS Complex	MSY (lbs.)
Selar crumenophthalmus – atulai or bigeye scad	122,500
Acanthuridae – surgeonfish	361,200
Carangidae – jacks	55,300
Crustaceans – crabs	9,100
Holocentridae – squirrelfish	78,500
Kyphosidae – chubs/rudderfish	29,500
Labridae – wrasses ¹	73,500
Lethrinidae – emperors	69,700
Lutjanidae – snappers	225,800
Mollusks – turbo snail; octopus; giant clams	16,700
Mugilidae – mullets	7,700
Mullidae – goatfish	31,000
Scaridae – parrotfish ²	189,900
Serranidae – groupers	110,300
Siganidae – rabbitfish	12,000
All Other CREMUS Combined (other coral reef ecosystem finfish, other	14,500
invertebrates, misc. bottomfish, misc. reef fish, and misc. shallow	
bottomfish)	
Cheilinus undulatus – humphead (Napoleon) wrasse	N.A.
Bolbometopon muricatum – bumphead parrotfish	N.A.
Carcharhinidae – reef sharks	N.A.

Table 22. Best available MSY estimates for the coral reef MUS in CNMI

1.1.12 Overfishing Limit, Acceptable Biological Catch, and Annual Catch Limits

1.1.12.1 Brief Description of the ACL Process

The Council developed a Tiered system of control rules to guide the specification of ACLs and Accountability Measures (AMs) (WPRFMC, 2011). The process starts with the use of the best scientific information available (BSIA) in the form of, but not limited to, stock assessments, published paper, reports, or available data. These information are classified to the different Tiers in the control rule ranging from Tier 1 (most information available typically an assessment) to Tier 5 (catch-only information). The control rules are applied to the BSIA. Tiers 1 to 3 would involve conducting a Risk of Overfishing Analysis (denoted by P*) to quantify the scientific uncertainties around the assessment to specify the Acceptable Biological Catch (ABC). This

would lower the ABC from the OFL (MSY-based). A Social, Ecological, Economic, and Management (SEEM) Uncertainty Analysis is performed to quantify the uncertainties from the SEEM factors. The buffer is used to lower the ACL from the ABC. For Tier 4, which contains stocks with MSY estimates but no active fisheries, the control rule is 91% of MSY. For Tier 5, which contains catch only information, the control rule is a third reduction in the median catch depending on the qualitative evaluation on what the stock status is based on expert opinion. ACL specification can choose from a variety of method including the above mentioned SEEM analysis or a percentage buffer (percent reduction from ABC based on expert opinion) or the use of an Annual Catch Target. Specifications are done on an annual basis but the Council normally specifies a multi-year specification.

The Accountability Measure for the coral reef and bottomfish fisheries in CNMI is an overage adjustment. The ACL is downward adjusted with the amount of overage from the ACL based on a three year running average.

1.1.12.2 Current OFL, ABC, ACL, and Recent Catch

The most recent multiyear specification of OFL, ABC, and ACL for the coral reef fishery was completed in the 160th Council meeting on June 25 to 27, 2014. The specification covers fishing year 2015, 2016, 2017, and 2018 for the coral reef MUS complexes. A P* and SEEM analysis was performed for this multiyear specification (NMFS, 2015). For the bottomfish, it was a roll over from the previous specification since an assessment update was not available for fishing year 2015. ACLs were not specified by NMFS for the coral reef ecosystem MUS because NMFS has recently acquired new information that require additional environmental analyses to support the Council's ACL recommendations for these management unit species (50 CFR Part 665).

Fishery	MUS	OFL	ABC	ACL	Catch
Bottomfish	Bottomfish multi-species complex	293,000	228,000	228,000	32,370
	Deepwater shrimp	N.A.	275,570	275,570	N.A.F
Crustacean	Spiny lobster	9,600	7,800	7,410	829
	Slipper lobster	N.A.	60	60	172
	Kona crab	N.A.	6,300	6,300	N.A.F
Precious	Black coral	8,250	2,100	2,100	N.A.F
Coral	Precious coral in CNMI expl. area	N.A.	2,205	2,205	N.A.F

Notes: The MUS highlighted in red have a three-year recent average catch that exceeds the prescribed ACL.

The catch shown in Table 23 takes the average of the recent three years as recommended by the Council at its 160th meeting to avoid large fluctuations in catch due to data quality and outliers. "N.A.F." indicates no active fisheries to date. "N.D." indicates that there are no data available.

1.1.13 Best Scientific Information Available

1.1.13.1 Bottomfish Fishery

Stock Assessment Benchmark

The benchmark stock assessment for the Territory Bottomfish Management Unit Species complex was developed and finalized in October 2007 (Moffitt et al., 2007). This benchmark utilized a Bayesian statistical framework to estimate parameters of a Schaefer model fit to a time series of annual CPUE statistics. The surplus production model included process error in biomass production dynamics and observation error in the CPUE data. This was an improvement to the previous approach of using index-based proxies for B_{MSY} and F_{MSY} . Best available information for the bottomfish stock assessment is as follows:

Input data: The CPUE and catch data used were from the Guam off-shore creel survey. The catch and CPUE were expanded on annual level. CPUE was expressed in line-hours. The data was screened for trips that landed more than 50% BMUS species using the handline gear.

Model: state-space model with explicit process and observation error terms (see Meyer and Millar, 1999).

Fishery independent source for biomass: point estimate of MSY from the Our Living Oceans Report (Humphreys and Moffitt, 1999; Moffitt and Humphreys, 2009)

Stock Assessment Updates

Updates to the 2007 benchmark done in 2012 (Brodziak et al., 2012) and 2015 (Yau et al., 2015). These included a two-year stock projection table used for selecting the level of risk the fishery will be managed under ACLs. Yau et al. (2015) is considered the best scientific information available for the Territory bottomfish MUS complex after undergoing a WPSAR Tier 3 panel review (Franklin et al., 2015). This was the basis for the P* analysis and SEEM analysis the determined the risk levels to specify ABCs and ACLs.

Other Information Available

Approximately every five years PIFSC administers a socioeconomic survey to small boat fishermen in CNMI. This survey consists of about 60 questions regarding a variety of topics, including fishing experiences, market participation, vessels and gear, demographics and household income, and fishermen perspectives. The survey requests participants to identify which MUS they primarily targeted during the previous 12 months, by percentage of trips. Full reports of these surveys can be found at the PIFSC Socioeconomics webpage (Hospital and Beavers, 2011).

1.1.13.2 Coral Reef Fishery

1.1.13.2.1 Stock Assessment Benchmark

No stock assessment has been generated for the coral reef fisheries. The SDCs using index-based proxies were tested for its applicability in the different MUS in the coral reef fisheries (Hawhee, 2007). This analysis was done on a gear level. It paints a dire situation for the shore-based fishery with 43% of the gear/species combination fell below B_{flag} and 33% below MSST with most catch and CPUE trends showing a decline over time. The off-shore fisheries were shown to be less dire with 50% of the gear/species combination fell below B_{flag} and 38% below MSST but

the catch and CPUE trends were increasing over time. The inconsistency in the CPUE and catch trends with the SDC results makes this type of assessment to be unreliable.

The first attempt to use a model based approach in assessing the coral reef MUS complexes was done in 2014 using a biomass-based population dynamics model (Sabater and Kleiber, 2014). This model was based on the original Martell and Froese (2012) model but was augmented with biomass information to relax the assumption behind carrying capacity. It estimates MSY based on a range of rate of population growth (r) and carrying capacity (k) values. The best available information for the coral reef stock assessment is as follows:

Input data: The catch data was derived from the inshore and off-shore creel surveys. Commercial receipt book information was also used in combination of the creel data. A downward adjustment was done to address for potential overlap due to double reporting.

Model: Biomass Augmented Catch MSY approach based on the original catch-MSY model (Martell and Froese, 2013; Sabater and Kleiber, 2014).

Fishery independent source for biomass: biomass density from the Rapid Assessment and Monitoring Program (RAMP) of NMFS' Coral Reef Ecosystem Division (CRED) was expanded to the hard bottom habitat from 0-30 m (Williams, 2010).

This model had undergone a CIE review in 2014 (Cook, 2014; Haddon, 2014; Jones, 2014). This was the basis for the P* analysis that determined the risk levels to specify ABCs

1.1.13.2.2 Stock Assessment Updates

No updates available for the coral reef MUS complex. However, NMFS-PIFSC is finalizing a length-based model for estimating sustainable yield levels and various biological reference points (Nadon et al., 2015). This can be used on a species level. The Council is also working with a contractor to enhance the BAC-MSY model to incorporate catch, biomass, CPUE, effort, length-based information in an integrated framework (Martell 2015)

1.1.13.2.3 Other Information Available

Approximately every five years PIFSC administers a socioeconomic survey to small boat fishermen in CNMI. This survey consists of about 60 questions regarding a variety of topics, including fishing experiences, market participation, vessels and gear, demographics and household income, and fishermen perspectives. The survey requests participants to identify which MUS they primarily targeted during the previous 12 months, by percentage of trips. Full reports of these surveys can be found at the PIFSC Socioeconomics webpage (Hospital and Beavers, 2011).

PIFSC and the Council conducted a workshop with various stakeholders in CNMI to identify factors and quantify uncertainties associated with the social, economic, ecological, and management of the coral reef fisheries (Sievanen and McCaskey 2014). This was the basis for the SEEM analysis that determined the risk levels to specify ACLs.

1.1.14 Harvest Capacity and Extent

The MSA defines the term "optimum," with respect to the yield from a fishery, as the amount of fish which:

- Will provide the greatest overall benefit to the Nation, particularly with respect to food production and recreational opportunities, and taking into account the protection of marine ecosystems.
- Is prescribed on the basis of the MSY from the fishery, as reduced by any relevant social, economic, or ecological factor.
- In the case of an overfished fishery, provides for rebuilding to a level consistent with producing the MSY in such fishery [50 CFR §600.310(f)(1)(i)].

Optimum yield in the coral reef and bottomfish fisheries is prescribed based on the MSY from the stock assessment and the best available scientific information. In the process of specifying ACLs, social, economic, and ecological factors were considered and the uncertainties around those factors defined the management uncertainty buffer between the ABC and ACL. OY for the bottomfish and coral reef fish MUS complexes is defined to be the level of harvest equal to the ACL consistent with the goals and objectives of the Fishery Ecosystem Plans and used by the Council to manage the stock.

The Council recognizes that MSY and OY are long term values whereas the ACLs are yearly snapshots based on the level of fishing mortality at F_{MSY} . There are situations when the long-term means around MSY are going to be lower than ACLs especially if the stock is known to be productive or relatively pristine or lightly fished. One can have catch levels and catch rates exceeding that of MSY over short-term enough to lower the biomass to a level around the estimated MSY and still not jeopardize the stock. In this situation is true for the territory bottomfish multi-species complex.

The harvest extent, in this case, is defined as the level of catch harvested in a fishing year relative to the ACL or OY. The harvest capacity is the level of catch remaining in the annual catch limit that can potentially be used for the total allowable level of foreign fishing (TALFF).

Table 24 summarizes the harvest extent and harvest capacity information for CNMI in 2017.

Fishery	MUS	ACL	Catch	Harvest extent (%)	Harvest capacity (%)
Bottomfish	Bottomfish multi-species complex	228,000	32,370	14.2	85.8
Crustacean	Deepwater shrimp	275,570	N.A.F.	0.0	100.0
	Spiny lobster	7,410			
	Slipper lobster	60	172	286	0.0
	Kona crab	6,300	N.A.F.	0.0	100.0
Precious coral	Black coral	2,100	N.A.F.	0.0	100.0
Fiectous corai	Precious coral in CNMI expl. area	2,205	N.A.F.	0.0	100.0

 Table 24. CNMI proportion of harvest capacity and extent for 2018

1.1.15 Administrative and Regulatory Actions

This summary describes management actions NMFS has taken for CNMI fisheries since the April 2018 Joint FEP Plan Team meeting.

June 14, 2018. Final rule. 5-Year Extension of Moratorium on Harvest of Gold Corals. This final rule extends the region-wide moratorium on the harvest of gold corals in the U.S. Pacific Islands through June 30, 2023. NOAA Fisheries intends this final rule to prevent overfishing and to stimulate research on gold corals.

February 8, 2019. Final rule. Reclassifying Management Unit Species to Ecosystem Component Species. This final rule reclassifies certain management unit species in the Pacific Islands as ecosystem component species. The rule also updates the scientific and local names of certain species. The intent of this final rule is to prioritize conservation and management efforts and to improve efficiency of fishery management in the region. This rule is effective March 11, 2019.

1.1.16 References

- Bowers, N.M., 2001. Problems of resettlement on Saipan, Tinian, and Rota, Mariana Islands. Occasional Historical Papers Series No. 7. CNMI Division of Historic Preservation, Saipan, MP.
- Cook, R., 2014. Report on the Review of the Biomass Augmented Catch-MSY Model for Pacific Island Coral Reef Ecosystem Resources. Report to Center for Independent Experts.
- Fricke, H. and Meischner, D., 1985. Depth limits of Bermudan scleractinian corals: a submersible survey. *Marine Biology*, 88(2), pp.175-187.
- Haddon, M., 2014. Center for Independent Experts (CIE) Peer Review of the Biomass Augmented Catch-MSY Model for Pacific Island Coral Reef Ecosystem Resources. Report submitted to the Center for Independent Experts.
- Hart, S.R., Coetzee, M., Workman, R.K., Blusztajn, J., Johnson, K.T.M., Sinton, J.M., Steinberger, B. and Hawkins, J.W., 2004. Genesis of the Western Samoa seamount province: age, geochemical fingerprint and tectonics. *Earth and Planetary Science Letters*, 227(1), pp.37-56.
- Humphreys, R. and Moffitt, R., 1999. Unit 17-Western Pacific Bottomfish and Armorhead Fisheries. DOC, NOAA, NMFS Our Living Oceans–Report on the Status of US Living Marine Resources, pp.189-192.
- Jones, C., 2014. Biomass Augmented Catch---MSY Model for Pacific Island Coral Reef Ecosystem Resources. Report submitted to the Center for Independent Experts.
- Kahng, S.E. and Maragos, J.E., 2006. The deepest, zooxanthellate scleractinian corals in the world? *Coral Reefs*, *25*(2), pp.254-254.

- Konter, J.G. and Jackson, M.G., 2012. Large volumes of rejuvenated volcanism in Samoa: Evidence supporting a tectonic influence on late-stage volcanism. *Geochemistry, Geophysics, Geosystems, 13*(6).
- Lang, J.C., 1974. Biological Zonation at the Base of a Reef: Observations from the submersible Nekton Gamma have led to surprising revelations about the deep fore-reef and island slope at Discovery Bay, Jamaica. *American Scientist*, *62*(3), pp.272-281.
- Martell, S. and Froese, R., 2013. A simple method for estimating MSY from catch and resilience. *Fish and Fisheries*, *14*(4), pp.504-514.
- Meyer, R. and Millar, R.B., 1999. Bayesian stock assessment using a state–space implementation of the delay difference model. *Canadian Journal of Fisheries and Aquatic Sciences*, 56(1), pp.37-52.
- Moffitt, R.B., Brodziak, J., and Flores, T., 2007. Status of the Bottomfish Resources of American Samoa, Guam, and Commonwealth of the Northern Mariana Islands, 2005. NOAA Pacific Islands Fisheries Science Center Administrative Report H-07-04.
- Nadon, M.O., Ault, J.S., Williams, I.D., Smith, S.G. and DiNardo, G.T., 2015. Length-based assessment of coral reef fish populations in the main and northwestern Hawaiian Islands. *PloS one*, *10*(8), p.e0133960.
- Neall, V.E. and Trewick, S.A., 2008. The age and origin of the Pacific islands: a geological overview. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 363(1508), pp.3293-3308.
- NMFS, 2015. Specification of Annual Catch Limits and Accountability Measures for Pacific Island Coral Reef Ecosystem Fisheries in Fishing Years 2015 through 2018. Honolulu, HI 96813. 228 p.
- Oram, R., TuiSamoa, N., Tomanogi, J., Sabater, M., Quach, M., Hamm, D., and Graham, C., 2011. American Samoa Shore-Based Creel Survey Documentation. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center.
- Oram, R., TuiSamoa, N., Tomanogi, J., Sabater, M., Quach, M., Hamm, D., and Graham, C., 2011. American Samoa Boat-Based Creel Survey Documentation. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center.
- Restrepo, V.R., Thompson, G.G., Mace, P.M., Gabriel, W.L., Low, L.L., MacCall, A.D., Methot, R.D., Powers, J.E., Taylor, B.L., Wade, P.R. and Witzig, J.F., 1998. Technical guidance on the use of precautionary approaches to implementing National Standard 1 of the Magnuson-Stevens Fishery Conservation and Management Act. NOAA Technical Memorandum NMFS-F/SPO-31, pp.1-54.
- Russell, S., 1999. Tiempon Alemán: A Look Back at German Rule of the Northern Mariana Islands, 1899-1914. University of Guam, Micronesian Area Research Center.

- Sabater, M. and Kleiber, P., 2014. Augmented catch-MSY approach to fishery management in coral-associated fisheries. *Interrelationships between Corals and Fisheries*. CRC Press, Boca Raton, FL, pp.199-218.
- Williams, I., 2010. U.S. Pacific Reef Fish Estimates Based on Visual Survey Data. NOAA Pacific Islands Fisheries Science Center Internal Report IR-10-024.
- WPRFMC, 2011. Omnibus Amendment for the Western Pacific Region to Establish a Process for Specifying Annual Catch Limits and Accountability Measures. Honolulu, HI 96813.
- Yau, A., Nadon, M., Richards, B., Brodziak, J., Fletcher, E., 2016. Stock assessment updates of the Bottomfish Management Unit species of American Samoa, the Commonwealth of the Northern Mariana Islands, and Guam in 2015 using data through 2013. U.S. Dept. of Commerce, NOAA Technical Memorandum, NMFS-PIFSC-51, 54 p.

1.2 GUAM FISHERY DESCRIPTIONS

1.2.1 Bottomfish Fishery

Bottomfishing on Guam is a combination of recreational, subsistence, and small-scale commercial fishing. It can be separated into two distinct fisheries separated by depth and species composition. The shallow water complex (< 500 feet) comprises the largest portion of the total bottomfish harvest and effort, and primarily includes: reef-dwelling snappers of the genera *Lutjanus*, *Aphareus*, and *Aprion*; groupers of the genera *Epinephelus*, *Variola*, and *Cephalopholis*; jacks of the genera *Caranx* and *Carangoides*; Holocentrids (*Myripristis* spp. and *Sargocentron* spp.); emperors of the genera *Lethrinus* and *Gymnocranius*; and Dogtooth Tuna (*Gymnosarda unicolor*). The deep water complex (> 500 feet) consists primarily of groupers of the genera *Hyporthodus* and *Cephalopholis*, jacks of the genera *Caranx* and *Seriola*, and snappers of the genera *Pristipomoides*, *Etelis*, and *Aphareus*. In recent years, deep water species have made up a significant portion of the total expanded bottomfishing catch.

The majority of people that participate in the bottomfish fishery are either subsistence or parttime commercial fishermen, operate boats less than 25 feet in length, and target primarily the shallow water bottomfish complex. It is not uncommon to intercept fishermen combining bottomfishing with other methods such as trolling, spearing, and jigging to maximize their catch. High demand has made it profitable to sell locally caught bottomfish, although overhead costs including fuel and gear may be significant factors for in determining a fisherman's selection of fishing method. The demand for local bottomfish, when combined with environmental pressures, however, may cause stress to local bottomfish stocks.

The majority of bottomfishing around Guam takes place on offshore banks, though practically no information exists on the condition of the reefs on offshore banks. On the basis of anecdotal information, most of the offshore banks are in good condition due to their isolation. According to Myers (1997), less than 20 percent of the total coral reef resources harvested in Guam are taken from the EEZ, primarily because the reefs are often associated with less accessible offshore banks. As such, finfish make up most of the catch in the EEZ. Most offshore banks are deep, remote, and subject to strong currents. Generally, these banks are only accessible during calm weather in the summer months (May to August/September). Galvez Bank is the closest and most

accessible and, consequently, fished most frequently. In contrast, other banks (White Tuna and Santa Rose, Rota) are remote and generally are fished only during exceptional weather conditions (Green 1997). Local fishermen report that up to ten commercial boats, with two to three people per boat, and some recreational boats, make use of the banks when the weather is good (Green 1997).

At present, the banks are fished using two methods: bottomfishing by hook and line, and jigging at night for bigeye scad (*Selar crumenophthalmus*; Myers 1997). In recent years, the estimated annual catch in these fisheries has ranged from 14 to 22 metric tons of shallow bottomfish and 3 to 15 metric tons of bigeye scad (Green 1997). The shallow water component accounted for nearly 68 percent (35,002 to 65,162 lbs.) of the aggregate bottomfish landings in fiscal years 1992–1994 (Myers 1997). Catch composition of the shallow water bottomfish complex (and coral reef species) is dominated by lethrinids, with a single species (*Lethrinus rubrioperculatus*) alone accounting for 28 percent of the total catch. Other important components of the bottomfish catch include lutjanids, carangids, other lethrinids, and serranids. Holocentrids, mullids, labrids, scombrids, and balistids are minor components of the shallow water bottomfish complex. It should be noted that at least two of these species (*Aprion virescens* and *Caranx lugubris*) are also found in deeper waters, and as a result comprise a portion of the catch of the deep water fishery.

Species that are commonly taken in the shallow-bottom fishery of Guam are:

Aphareus furca Aprion virescens Lutjanus kasmira, L. fulvus Carangoides orthogrammus Caranx lugubris, C. melampygus, C. ignobilis Selar crumenophthalmus Cephalopholis argus, C. spiloparaea, C. urodeta Epinephelus fasciatus Gymnocranius spp. Lethrinus atkinsoni, L. erythracanthus, L. olivaceus, L. rubrioperculatus, L. xanthochilus Gymnosarda unicolor Sargocentron spp. Myripristis spp. Variola albimarginata, V. louti

Species that are commonly taken in the deep-bottom fishery of Guam are:

Aphareus rutilans Aprion virescens Caranx lugubris Seriola dumerilii Cephalopholis igarashiensis, C. sonnerati Hyporthodus octofasciatus *Etelis carbunculus*, *E. coruscans Pristipimoides* spp.

1.2.2 Coral Reef Fishery

Shore-based fishing accounts for most of the fish and invertebrate harvest from coral reefs around Guam. The coral reef fishery harvests more than 100 species of fish, including members of the families Acanthuridae, Carangidae, Gerreidae, Holocentridae, Kyphosidae, Labridae, Lethrinidae, Lutjanidae, Mugilidae, Mullidae, Scaridae, and Siganidae (Hensley and Sherwood 1993). There are several pulse fisheries for juvenile fish that can be major components of the coral reef fishery, but totals in these can vary year to year. These include juvenile rabbitfish (manahak and lesso'), juvenile jacks (i'e), and juvenile goatfish (ti'ao).

Species that are commonly taken in the coral reef fishery of Guam are:

Naso unicornis, N. lituratus Acanthurus xanthopterus, A. lineatus, A. triostegus Caranx melampygus, C. papuensis, i'e *Selar crumenophthalmus* Gerres acinaces *Myripristis* spp. Sargocentron spp. *Neoniphon* spp. Kyphosus cinerascens, K. vaigiensis Cheilinus undulatus, Cheilinus spp., Halichoeres spp. Lethrinus harak, L. obseletus, L. atkinsoni, Gnathodentex aurolineatus Lutjanus fulvus, L. monostigma, L. bohar, L. argentimaculatus Mulloidichthys flavolineatus, M. vanicolensis, ti'ao Parupeneus multifasciatus, P. barberinus, P. cyclostomus Ellechelon vaigiensis, Moolgarda engeli, M. seheli Chlorurus spilurus, C. frontalis, Scarus psittacus, S. altipinnis, S. rubrioviolaceus, S. ghobban, S. schlegeli Siganus spinus, S. argenteus, manahak, lesso

Hook and line is the most common method of fishing for coral reef fish on Guam. In 2018, hook and line fishing accounted for around 75% of fishers and gear. Throw net (talaya) is the second most common method, accounting for about 10% of fishers and gear. Other methods include gill net, snorkel spearfishing, SCUBA spearfishing, surround net, drag net, hooks and gaffs, and gleaning.

1.2.3 Fishery Data Collection System

Guam currently has three fishery-dependent collection programs which can be described as longterm data collection programs with different approaches for gathering important information on fishery harvest methods performed by fishermen. The three programs are the offshore data program, the inshore data program, and the commercial fishery program. The Sportfish Restoration Grant from the U.S. Fish and Wildlife Service provides the significant portion of the funding for these programs. Training of the fishery staff to collect information is rigorous, and year-end totals are calculated by an expansion process done with in collaboration with NOAA PIFSC. Identification of fish to the species level is the goal of Guam's fishery staff.

The offshore and inshore programs, boat- and shore-based creel surveys, respectively, are longterm programs that collect participation, effort, and catch data from fishermen. Collaboration with PIFSC has resulted in a reproducible computer database program that can analyze the data to produce various types of trends that describe status of both charter and non-charter fisheries in federal and local waters. The commercial receipt book program is an important source of information for fish that enter the commercial market; however, obtaining information from dealers has been sporadic, occasionally with less than three dealers providing data. In order to improve this situation, the Council, DAWR, and PIFSC partnered to increase vendor participation in the data collection program through the Territory Science Initiative.

Guam has continued to experience high levels of commercial activity targeting reef fish. This has primarily been performed by recent migrants from the Federated States of Micronesia. The fishers are generally hired by retail shops to fish six days per week; there have been as many as eight or nine of these stores open at a time. Gathering commercial sales data from these vendors has been difficult due to vendor anxiety surrounding the reason data is being collected and the lack of perceived benefit to the vendor for reporting sales. There have been several instances during data collection where the vendors were not able to comfortably communicate in English. Data collected from these vendors is of limited value, as fish are not identified to species level, and are frequently labeled simply as "reef fish". In 2018, there were seven vendors reporting sales. In order to improve this situation, the Council, DAWR, and PIFSC partnered to increase vendor participation in the data collection program through the Territory Science Initiative. Extensive training, follow-ups, education, and outreach efforts were conducted to vendors and fishermen to increase participation in data collection.

Oram et al. (2011a) and (2011b) describe the fishery data collection process for the offshore and inshore programs on Guam. In general, DAWR staff collect fishery information through a series of random-stratified surveys for participation (i.e. accounting for fishing effort) and catch interviews (i.e. accounting for catch composition, size frequency, and catch-per-unit effort, CPUE). These data are transcribed into the WPacFIN database, and the annual catch estimates are expanded from the effort and CPUE information. Monthly commercial vendor reports are tallied at the end of the year and adjusted based on the coverage estimates provided by the vendor and/or the data collection program staff.

1.2.4 Meta-Data Dashboard Statistics

The meta-data dashboard statistics describe the amount of data used or available to calculate the fishery-dependent information. Creel surveys are sampling-based systems that require random-stratified design applied to pre-scheduled surveys. The number of sampling days, participation runs, and catch interviews would determine if there are sufficient samples to run the expansion algorithm. The trends of these parameters over time may infer survey performance. Monitoring the survey performance is critical for explaining the reliability of the expanded information.

Commercial receipt book information depends on the amount of invoices submitted and the number of vendors participating in the program. Variations in these meta-data affect the commercial landing and revenue estimates.

1.2.5 Creel Survey Meta-Data Statistics

Calculations: Shore-based data

Interview Days: Count of the number of actual days that Creel Survey Data were collected. It's a count of the number of unique dates found in the interview sampling data (the actual sampling date data, include opportunistic interviews).

Participation Runs: Count of the number of unique occurrences of the day/night shift combined with surveyor's initials (the person assigned to conduct the participation survey on a given date). This is compiled annually from the participation header data.

Catch Interviews: Count of the total number of data records found in the interview header data (number of interview headers). This is divided into two categories, interviews conducted during scheduled survey days (Regular), and opportunistic interviews (Opportunistic) which are collected on non-scheduled days.

Calculation: Boat-based data

Sample days: Count of the total number of unique dates found in the boat log data sampling date data.

Catch Interviews: Count of the total number of data records found in the interview header data (number of interview headers). This is divided into two categories, interviews conducted during scheduled survey days (Regular), and opportunistic interviews (Opportunistic) which are collected on non-scheduled days.

		Shore-Based			Boat-Based		
Year	# Interview Days	# Participation Runs	# Catch Interviews		# Sample Days	# Catch Interviews	
			Regular	Opportunistic		Regular	Opportunistic
1982					46	469	8
1983					47	431	34
1984	12	23	56	0	53	531	0
1985	51	78	367	0	66	812	0
1986	47	74	291	0	49	522	0
1987	45	62	245	0	48	612	0
1988	48	62	280	0	48	949	0
1989	49	63	297	0	48	931	2
1990	47	62	485	0	48	1,028	0

Table 25. Summary of Guam creel survey meta-data describing survey performanceparameters with potential influence on the creel survey expansion from 1982-2018

1991	48	54	497	0	48	1,019	1
1992	48	55	611	0	48	1,110	0
1993	48	48	598	0	52	1,119	0
1994	47	48	702	0	55	1,168	0
1995	48	49	764	0	96	1,613	4
1996	48	53	679	0	96	1,608	0
1997	48	67	915	0	96	1,358	0
1998	49	73	880	0	96	1,581	0
1999	48	68	939	1	96	1,367	3
2000	48	84	791	0	96	1,246	1
2001	48	96	753	0	96	908	6
2002	47	94	439	4	84	610	1
2003	48	96	518	10	78	446	0
2004	47	93	337	35	95	530	1
2005	48	96	371	3	97	552	0
2006	49	96	300	0	96	556	0
2007	48	96	243	118	96	500	0
2008	46	96	282	0	96	571	2
2009	47	94	321	1	96	803	0
2010	48	94	299	0	96	902	0
2011	43	96	250	0	96	645	0
2012	47	92	272	0	74	371	0
2013	49	94	257	0	96	561	1
2014	48	92	227	0	90	635	9
2015	45	96	279	46	97	651	13
2016	48	96	281	9	93	900	2
2017	45	92	245	1	92	820	10
2018	46	94	221	1	89	795	11
10 yr avg	47	94	265	6	92	708	5
10 yr SD	2	2	30	14	7	159	5
20 yr avg	47	93	381	11	92	718	3
20 yr SD	1	6	203	27	6	248	4

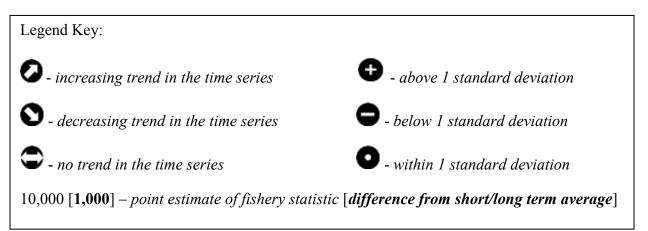
1.2.5.1 Commercial receipt book statistics

Calculations:

Vendors: Count of the number of unique buyer codes found in the commercial purchase header data from the Commercial Receipt Book.

Invoices: Count of the number of unique invoice numbers found in the commercial header data from the Commercial Receipt Book.

Table 26. Summary of Guam commercial receipt book meta-data describing reporting performance parameters with potential influence on total commercial landing estimates from 1980-2018


Year	Number of Vendors	Total Invoices
1000	v endors *	Collected *
1980		*
1981	*	
1982	*	*
1983	3	2,311
1984	3	2,587
1985	*	*
1986	*	*
1987	*	*
1988	*	*
1989	*	*
1990	4	2,803
1991	3	2,512
1992	3	2,737
1993	3	2,664
1994	*	*
1995	3	1,565
1996	6	1,965
1997	7	2,923
1998	4	3,591
1999	5	3,410
2000	3	3,868
2001	3	4,155
2002	3	3,494
2003	*	*
2004	3	3,104
2005	3	2,649
2006	4	2,589
2007	*	*
2008	*	*
2009	*	*
2009	*	*
2010	*	*
2011	*	*
2012	*	*
2013	8	1,353
2014	9	1,335
2013	7	1,333

2016	8	1,661
	0	,
2017	11	1,969
2018	10	1,674
10 yr avg	5	1,586
10 yr SD	4	265
20 yr avg	4	2,293
20 yr SD	3	886

*Less than three vendors

1.2.6 Fishery Summary Dashboard Statistics

The Fishery Summary Dashboard Statics section consolidates all fishery-dependent information comparing the most recent year with short-term (recent 10-year) and long-term (recent 20-year) average (shown bolded in [brackets]). Trend analysis of the past 10 years will dictate the trends (increasing, decreasing, or no trend). The right-most symbol indicates whether the mean of the short-term and long-term years were above, below, or within one standard deviation of the mean of the full time series.

Table 27. 2018 annual indicators for the coral reef and bottomfish fishery describingfishery performance comparing current estimates with short-term (10 year) and long-term(20 year) average values

Fishery	Fishery statistics	Short-term (10 years)	Long-term (20 years)		
Bottomfish	Estimated catch (lbs.)				
All species caught	Boat and shore creel data estimated (expanded) total lbs. (all BF trips)	32,751[▲6%] 🗢 Ο	22,962 [▼10%] ♥♥		
in the BF gear	Estimated total lbs. (all species) commercial purchase data	No trends available due to confidentiality	No trends available due to confidentiality		
Bottomfish management unit species only	Total creel data Estimated (expanded) total lbs. (all BF trips)	32,750[▲11%] 🗢 Ο	32,750[▼ 8%] ◯ ○		
species only	Estimated total lbs. (all	No trends available due to	No trends available due to		

	species) commercial purchase data	confidentiality	confidentiality
	Catch-per-unit effort (lbs./ge	ear-hours)	
	CPUE (creel data only)	0.0076[▼58%] 🗢 🗢	0.0076[▼52%]
	Fishing effort (only available	for creel data)	
	Estimated (expanded) total bottomfish # of trips	697[▼ 36%] ♥●	697[▼ 36%] ♥●
	Fishing participants		
	Estimated total # of fishers	1,158[▲6%] 💭 🔿	1,158[▲6%] 💭 🔿
	Bycatch		
	# bycatch caught	985[▼47%] 🗢 🗢	985[▼53%] �●
	# bycatch kept	1,492[▼19%] 🗢 🖸	1,492[▼29%] ♥♥
	# bycatch released	57[▼49%] ♥ ♥	N/A
Coral Reef	Estimated catch (lbs.)	Γ	1
	Boat-based creel data (expanded estimate all gears)	136,385[▲12%] 💭 🖸	136,385[▼6%] ♥♥
	Shore-based creel (expanded estimate all gears)	106,707[▼ 16%] ♥ ●	106,707[▼5%] 🌑 🔘
	Commercial Purchase	No trends available due to confidentiality	No trends available due to confidentiality
	Catch-per-unit-effort (lbs./g	ear hours)	
	BB spear	0.1607[▼24%] ♥●	0.1607[▼5%] ℃0
	BB SCUBA	0.4026[▼67%] ♥●	0.4026[▼61%] ℃ •
	BB Gill Net	0.6667[▼57%] ℃ ○	0.6667[▼45%] ℃ ○
	BB Troll	0.0098[▼7%] 🗢 🔾	0.0098[▼8%]
	SB Hook and Line	0.0017[▼29%] 🖉 🔘	0.0017[▲13%]
	SB Throw/Cast Net	0.0935[▲129%] ℃	0.0935 [▲285%] 🛇 🖨
	SB Gill Net	1.2284[▲350%] 🖉 🕀	1.2284[▲673%]
	SB Spear	0.9091[▲184%] () ⊕	0.9091[▲335%] 🛇 🕀
	SB Hook and Gaff	N/A	N/A
	Fishing effort (# of gear-hou	rs by gear type)	

		• •	
	BB spear	3,960[▼81%] 🖉 🖸	3,960[▼29%] ℃ ◯
	BB SCUBA	3,200[▲194%] 🖉 🕀	3,200[▲49%] 00
	BB Gill Net	15[▼94%] ☎О	15[▼98%] ♥♥
	BB Troll	6,807,570[▲23%]	6,807,570 [▲34%]
	SB Hook and Line	144,364[▼5%] 💭 🔾	144,364[▼52%] ♥♥
	SB Throw/Cast Net	3,713[▼36%] 💭 🔘	3,713[▼54%] ♥♥
	SB Gill Net	162[▼87%] ♥♥	162[▼98%] �♥
	SB Spear	88[▼91%] 🗢 🔾	88[▼97%] �♥
	SB Hook and Gaff	N/A	N/A
	Fishing participants (# of §	gear)	
	BB spear	1,153[▲7%]	1,153[▲14%]
	BB SCUBA	1,460[▲12%] 💭 🔘	1,460[▲24%]
	BB Gill Net	1,825[▲174%] 🖉 🕀	1,825[▲199%] 🖉 🕀
	BB Troll	1,178[▼1%] ♥0	1,178[▼7%] ♥♥
	SB Hook and line	64,768[▼15%] �O	64,768[▼ 28%] ♥ ●
	SB Throw/cast net	8,014[▼37%] �●	8,014[▼46%] SO
	SB Gill net	2,796[▼55%]	2,796[♥63%]
	SB Spear	7,642[▼17%] 💭 🛈	7,642[▼32%] ♥♥
	SB Hook and Gaff	373[▼83%] �●	373[▼87%] �♥
	Boat- Based Bycatch		
	# bycatch caught	9,580[▼15%] ♥ ●	9,580[▼10%] ♥♥
	# bycatch kept	9,578[▼15%] ♥ 0	9,578[▼10%] ♥♥
	# bycatch released	2[▼71%] ♥♥	2[▼88%] �0
	Shore- Based Bycatch		
	# bycatch caught		16,981[▲194%] ♥ ⊕
	# bycatch kept	16,965[▲188%]	16,965[▲198%]

		# bycatch released	16[▼84%] ♥♥	16[▼79%] ♥♥
--	--	--------------------	-------------	-------------

1.2.7 Catch statistics

The following section summarizes the catch statistics for the bottomfish and coral reef fisheries in Guam. Estimates of catch are summarized from the creel survey and commercial receipt book data collection programs. Catch statistics provide estimates of annual harvest from the different fisheries. Estimates of fishery removals can provide proxies for the level of fishing mortality and a reference level relative to established quotas. This section also provides detailed levels of catch for fishing methods and the top species complexes harvested in the coral reef and bottomfish fisheries.

1.2.7.1 Catch by Data Stream

This section describes the estimated total catch from the shore- and boat-based creel survey programs as well as the commercial landings from the commercial receipt book system. The difference between the creel total and the commercial landings is assumed to be the non-commercial component. However, there are cases where the commercial landing may be higher than the estimated creel total of the commercial receipt book program. In this case, the commercial receipt books are able to capture the fishery better than the creel surveys.

Calculations: Estimated landings are based on all bottomfish species harvested, regardless of the gear used, for all data collection programs (e.g. shore-based creel, boat-based creel and the commercial purchase reports).

Veen	Creel Surv	ey Estimates	Cuesl Tetal	Commercial
Year	Boat-Based	Shore-Based	Creel Total	landings
1980				*
1981				*
1982	24,943	0	24,943	*
1983	38,823	NULL	38,823	6,255
1984	39,146	NULL	39,146	5,329
1985	49,399	333	49,732	*
1986	19,145	451	19,596	*
1987	27,937	12	27,949	*
1988	44,807	3,100	47,907	*
1989	57,949	76	58,025	*
1990	41,846	3,872	45,718	5,664
1991	38,744	6,957	45,701	3,061
1992	49,231	4,233	53,464	2,994
1993	53,803	1,348	55,151	4,621
1994	48,822	545	49,367	*
1995	40,709	2,108	42,817	7,695

Table 28. Summary of time series of catch (lbs.) for all species caught using the
bottomfishing gear in Guam from 1980-2018

1996	52,667	2,798	55,465	2,205
1997	30,232	1,946	32,178	2,687
1998	37,391	812	38,203	5,277
1999	52,795	1,066	53,861	22,025
2000	66,108	906	67,014	13,696
2001	50,864	178	51,042	11,900
2002	23,832	2,573	26,405	6,245
2003	41,677	439	42,116	*
2004	37,266	1,040	38,306	10,453
2005	36,477	223	36,700	13,552
2006	37,713	1,769	39,482	9,436
2007	26,558	195	26,753	*
2008	36,847	168	37,015	*
2009	38,834	960	39,794	*
2010	28,320	224	28,544	*
2011	58,343	682	59,025	*
2012	21,718	466	22,184	*
2013	29,777	1,137	30,914	*
2014	26,824	1,491	28,315	1,714
2015	15,142	499	15,641	923
2016	27,167	614	27,781	1,619
2017	22,267	695	22,962	5,153
2018	31,634	1,117	32,751	3,556
10 yr avg	30,003	789	30,791	4,863
10 yr SD	11,199	362	11,257	3,248
20 yr avg	35,508	822	36,330	7,662
20 yr SD	12,832	597	12,801	5,064

*Less than three vendors

Calculations: Estimated landings are based on a pre-determined list of species (Appendix 3) identified as the BMUS Complex regardless of the gear used, for each data collection (shore-based creel, boat-based creel, and the commercial purchase reports).

Table 29. Summary	of time series	s of BMUS catcl	h (lbs.) in Gua	m from 1980-2018
	or enne series			

Year	Creel Surv	ey Estimates	Creel Total	Commercial
rear	Boat-Based	Shore-Based	Creel Total	Landings
1980				*
1981				*
1982	24,032		24,032	*
1983	38,794		38,794	6,255
1984	16,205		16,205	5,329
1985	46,574	4	46,578	*

20 yr SD	13,235	628	13,170	5,060
20 yr avg	34,819	701	35,521	7,586
10 yr SD	11,799	397	11,914	3,161
10 yr avg	28,888	697	29,585	4,750
2018	31,634	1,116	32,750	3,556
2017	18,904	239	19,143	5,095
2016	26,380	512	26,892	1,619
2015	13,532	305	13,837	804
2014	23,466	1,399	24,865	1,651
2013	29,741	1,128	30,869	*
2012	21,718	464	22,182	*
2011	58,343	680	59,023	*
2010	26,821	223	27,044	*
2009	38,342	905	39,247	*
2008	36,847	168	37,015	*
2007	26,558	194	26,752	*
2006	37,704	1,768	39,472	9,436
2005	36,431	129	36,560	13,552
2004	36,008	865	36,873	10,453
2003	41,567	301	41,868	*
2002	23,803	2,572	26,375	6,245
2001	50,370	175	50,545	11,900
2000	65,682	768	66,450	13,534
1999	52,531	117	52,648	22,025
1998	36,966	409	37,375	5,267
1997	29,765	1,467	31,232	2,687
1996	52,484	2,718	55,202	2,205
1995	40,233	1,900	42,133	7,657
1994	48,621	396	49,017	*
1993	53,457	1,184	54,641	4,621
1992	48,960	4,169	53,129	2,994
1991	38,253	6,849	45,102	3,061
1990	41,653	3,723	45,376	5,664
1989	57,580	76	57,656	*
1988	43,982	3,092	47,074	*
1987	27,831	12	27,843	*

*Less than three vendors

Calculations: Estimated landings are based on a pre-determined list of species (Appendix 3) identified as the CREMUS Complex regardless of the gear used, for each data collection (shore-based creel, boat-based creel, and the commercial purchase reports).

Veen	Creel Surv	vey Estimates	Creel Total	Commercial	
Year	Boat-Based	Shore-Based	Creel I otal	Landings	
1980				*	
1981				*	
1982	29,248		29,248	*	
1983	53,077		53,077	80,171	
1984	95,924		95,924	118,390	
1985	131,353	401,187	532,540	*	
1986	69,133	236,498	305,631	*	
1987	62,967	229,383	292,350	*	
1988	111,436	217,126	328,562	*	
1989	156,378	153,837	310,215	*	
1990	121,793	125,914	247,707	50,769	
1991	171,220	261,531	432,751	38,322	
1992	123,803	184,287	308,090	38,793	
1993	174,809	100,143	274,952	33,320	
1994	154,312	142,562	296,874	*	
1995	267,515	189,515	457,030	26,304	
1996	386,366	101,281	487,647	50,376	
1997	219,166	191,563	410,729	72,762	
1998	230,905	231,903	462,808	169,663	
1999	374,272	277,098	651,370	258,789	
2000	268,191	68,611	336,802	262,194	
2001	256,389	84,594	340,983	267,622	
2002	122,999	54,439	177,438	197,642	
2003	152,096	117,200	269,296	*	
2004	166,830	80,487	247,317	155,223	
2005	88,942	72,068	161,010	179,408	
2006	86,051	92,737	178,788	194,229	
2007	72,870	69,105	141,975	*	
2008	103,971	67,362	171,333	*	
2009	126,473	411,859	538,332	*	
2010	76,133	80,402	156,535	*	
2011	260,962	77,422	338,384	*	
2012	87,746	149,342	237,088	*	
2013	87,812	181,043	268,855	*	
2014	142,326	48,592	190,918	87,801	
2015	122,065	81,157	203,222	58,762	
2016	97,872	56,971	154,843	73,250	
2017	75,373	72,055	147,428	273,375	

Table 30. Summary of time series of CREMUS catch (lbs.) in Guam from 1980-2018

2018	136,385	106,707	243,092	133,941
10 yr avg	121,315	126,555	247,870	129,166
10 yr SD	52,104	102,847	112,010	61,775
20 yr avg	145,288	112,463	257,750	164,488
20 yr SD	79,819	85,998	129,944	65,388

*Less than three vendors

1.2.7.2 Expanded catch estimates by fishing methods

Catch information is provided for the top shore-based and boat-based fishing methods that contribute to a majority of the annual catch.

Calculations: The creel survey catch time series are the sum of the estimated weight for selected gear in all strata for all species (except for trolling, which exclude PMUS as well as any other pelagic species complex).

V		Shore	-Based M	ethods			Boat-Based Methods				
Year	Cast Net	H&L	Gillnet	Spear	SCUBA	H&G	Bottom	Spear	SCUBA	Troll*	
1982				_			41,328	420	3,135	14,747	
1983							50,416	1,355	4,400	14,586	
1984							57,412	14,108	5,460	6,867	
1985	83,628	41,488	59,241	83,182	3,136	6,900	88,045	18,737	12,761	18,692	
1986	72,685	34,137	77,319	35,638	0	3,582	34,515	12,545	5,145	14,918	
1987	75,312	31,262	78,088	31,650	0	2,076	44,459	12,448	7,474	12,440	
1988	28,197	44,121	84,778	44,074	3,862	6,820	67,037	24,712	10,649	24,956	
1989	38,948	40,012	40,550	13,435	1,282	8,267	79,972	30,930	20,839	15,349	
1990	33,648	43,856	37,089	10,430	441	1,883	61,401	28,871	22,273	10,895	
1991	105,524	52,137	51,556	18,085	70	3,748	60,753	27,898	37,027	19,522	
1992	40,493	41,928	67,799	26,380	260	1,484	78,175	35,162	25,226	8,533	
1993	20,711	14,840	21,458	30,996	497	4,053	107,130	39,434	22,848	5,611	
1994	44,410	33,176	27,242	25,453	1,247	3,386	105,283	37,555	27,244	12,080	
1995	81,934	22,492	25,148	38,939	14,452	2,207	101,073	40,554	74,734	17,045	
1996	47,587	19,758	13,423	14,498	688	1,953	129,708	67,447	91,810	34,810	
1997	61,155	34,158	16,456	20,248	237	2,159	109,346	37,363	41,920	16,396	
1998	54,412	27,401	15,276	88,172	1,844	20,082	99,600	56,443	68,197	17,957	
1999	100,194	26,485	33,541	75,345	320	15,294	122,930	45,200	82,024	30,561	
2000	21,196	14,780	14,216	15,265	117	763	115,836	42,403	116,071	20,367	
2001	22,304	7,362	8,934	21,083	106	5,670	123,975	74,369	65,103	17,581	
2002	22,352	12,867	5,913	13,374	89	444	55,448	21,711	34,766	10,922	
2003	40,729	16,174	10,975	50,456	157	177	82,223	22,649	42,685	30,524	
2004	31,462	11,932	6,530	27,397	70	200	61,874	33,601	51,237	52,619	
2005	23,509	8,286	22,033	8,073	394	7,944	62,651	15,037	32,375	13,387	
2006	33,873	39,707	6,120	16,550	552	765	89,865	12,796	6,359	13,755	
2007	28,815	6,066	15,867	12,053	137	5,131	57,750	24,704	29,989	10,567	

Table 31. Summary of expanded creel survey time series of catch (lbs.) by gear type in Guam for 1982-2018

Fishery Performance

2008	29,866	13,432	20,403	3,209	0	362	59,639	31,433	25,449	6,037
2009	44,133	342,402	6,569	2,329	0	13,746	89,997	22,669	37,424	12,185
2010	6,440	19,873	50,294	2,063	0	706	56,164	23,635	32,608	14,026
2011	38,331	33,663	2,607	1,619	211	378	88,694	26,483	67,431	6,637
2012	95,362	31,598	15,335	6,361	30	6,886	40,214	23,986	14,087	1,630
2013	44,113	98,377	26,579	6,675	148	4,090	42,601	20,816	5,390	26,073
2014	37,436	8,796	576	1,009	30	181	69,300	28,088	36,140	21,027
2015	49,829	10,332	8,140	45,819	0	1,755	29,395	22,371	34,607	19,750
2016	11,300	12,603	8,063	25,645	0	712	51,475	28,985	21,891	17,619
2017	29,163	33,063	2,873	4,000	307	762	46,715	17,792	11,201	12,095
2018	33,976	48,188	10,700	13,549	183	72	57,903	23,051	65,997	11,951
10 yr avg	39,008	63,890	13,174	10,907	152	2,929	57,246	23,788	32,678	14,299
10 yr SD	23,019	96,116	14,283	13,658	99	4,149	19,060	3,185	20,060	6,773
20 yr avg	37,219	39,799	13,813	17,594	190	3,302	70,232	28,089	40,642	17,466
20 yr SD	22,766	72,432	11,737	18,958	141	4,455	26,653	13,141	26,831	10,947

1.2.7.3 Top Species in the Catch for the Boat- and Shore-Based Fisheries

The time series for catch is an indicator of fishery performance. Fluctuations in the catch can be attributed to various factors and there is no single explanatory variable for the trends. The 10 species group in the boat and shore-based catch for the coral reef fishery make up 67% and 76%, respectively, of the total annual catches.

Calculations: Catch by species complex is tallied directly from the boat-based expanded species composition data combining all gear types and species, for all strata.

The averages for the table below were calculated from catch estimates for the entire time series across each of the CREMUS groupings. The average catch for each grouping is ranked from the highest to lowest. The dominant groups that make up more than half of the total annual catch are reported.

Calculations: Catch by species complex is tallied directly from the boat-based expanded species composition data combining all gear types and species, for all strata.

The averages for the table below were calculated from catch estimates from the entire time series for each of the CREMUS grouping. The average catch is ranked from the highest to lowest catch. The dominant groups that make up a majority of the catch are reported

Veer					Boat-Base	d Estimate	ed Pounds				
Year	Bottomfish	BMUS	Atulai	Emperors	Surgeonfish	Jacks	Parrotfish	Groupers	Snappers	Goatfish	Rabbitfish
1982	24,944	24,033	204	991	55	4,823	197	5,034	1,710	372	11
1983	38,824	38,794	28,099	929	949	3,425	1,049	804	2,102	805	0
1984	39,144	16,203	37,342	3,774	1,023	2,869	1,768	1,423	556	377	0
1985	49,401	46,576	51,625	5,443	3,792	6,237	9,014	4,706	3,975	1,810	140
1986	19,147	19,147	22,004	2,719	2,559	6,585	4,819	1,708	2,693	274	60
1987	27,938	27,832	14,913	2,152	1,431	6,170	6,074	2,686	2,697	612	104
1988	44,808	43,983	33,000	3,094	7,510	15,149	9,479	3,559	3,742	1,404	267
1989	57,946	57,578	60,347	5,665	13,994	8,790	9,910	1,559	4,470	4,611	1,769
1990	41,846	41,653	9,602	15,752	19,415	6,537	12,651	8,749	4,547	6,482	2,890
1991	38,744	38,252	34,101	10,986	12,797	5,693	24,141	5,310	8,319	5,325	925
1992	49,231	48,961	10,077	13,306	20,403	6,381	22,345	4,789	7,915	2,722	662
1993	53,805	53,460	29,291	10,245	12,141	7,467	15,689	11,450	6,009	10,341	2,535
1994	48,822	48,621	4,063	18,064	16,635	13,499	17,515	9,702	6,184	3,782	1,247
1995	40,706	40,231	52,171	22,603	39,683	16,533	24,169	8,278	5,869	9,210	3,736
1996	52,669	52,486	98,881	27,165	56,172	40,254	22,232	6,931	9,500	6,257	3,950
1997	30,233	29,766	32,958	26,672	28,141	13,975	19,358	9,229	4,230	7,808	2,867
1998	37,390	36,965	31,118	19,340	47,571	10,501	22,108	6,496	5,938	7,459	5,079
1999	52,795	52,531	135,337	19,394	44,710	25,812	25,786	7,287	6,666	10,098	3,925
2000	66,109	65,682	14,008	29,076	52,732	18,161	30,770	12,056	8,019	9,056	5,147
2001	50,866	50,371	7,974	34,764	31,109	15,731	27,856	9,845	5,902	3,775	8,545
2002	23,835	23,806	438	24,871	20,462	15,934	16,497	4,151	1,934	5,166	3,072
2003	41,677	41,567	502	18,569	18,640	38,377	18,237	5,909	3,618	2,990	1,553
2004	37,266	36,008	1,768	13,274	35,195	37,328	19,616	6,396	5,593	1,009	731
2005	36,479	36,432	160	9,857	18,382	17,195	8,953	6,775	1,462	3,656	156
2006	37,713	37,705	1,155	6,321	4,258	19,979	2,222	3,917	4,702	4,732	204
2007	26,558	26,558	848	10,572	8,695	10,489	7,968	1,417	2,043	1,274	19

Table 32. Catch time series of 11 top CREMUS from Guam boat-based creel survey expansion data from 2000-2018

2008	36,844	36,844	10,335	7,560	24,395	8,460	7,524	7,205	5,538	6,599	1,486
2009	38,834	38,342	11,337	16,494	24,717	7,155	7,988	10,265	2,946	2,355	272
2010	28,320	26,821	5,887	11,940	11,518	7,706	6,788	3,884	3,623	1,460	485
2011	58,342	58,342	120,766	12,529	12,235	6,172	4,394	3,192	3,399	565	304
2012	21,718	21,718	24,936	7,210	3,313	3,083	5,206	1,950	2,857	2,470	1,349
2013	29,778	29,742	19,864	11,003	9,817	12,440	9,458	3,856	3,951	972	1,167
2014	26,823	23,465	4,077	22,347	10,376	13,027	8,856	5,136	3,741	8,399	3,808
2015	15,142	13,531	28,707	8,053	4,966	14,375	1,440	2,090	5,061	3,145	782
2016	27,165	26,379	2,523	9,419	7,672	18,661	10,493	3,352	2,561	1,615	784
2017	22,271	18,908	6,063	5,506	3,714	11,707	1,707	9,392	3,317	704	915
2018	31,636	31,636	8,503	5,417	5,408	7,560	4,117	4,321	2,986	1,070	311
10 yr avg	28,888	30,003	23,266	10,992	9,374	10,189	6,045	4,744	3,444	2,276	1,018
10 yr SD	11,798	11,199	33,626	4,991	5,968	4,400	3,014	2,704	678	2,190	994
20 yr avg	34,819	35,509	20,259	14,209	17,616	15,468	11,294	5,620	3,996	3,556	1,751
20 yr SD	13,235	12,832	36,878	8,047	13,798	9,184	8,624	2,917	1,653	2,852	2,104

 Table 33. Catch time series of 11 top CREMUS from Guam shore-based creel survey expansion data from 1980-2018

Veer				Sho	re-Based Est	imated Pou	inds			
Year	Surgeonfish	Rabbitfish	Mollusks	Atulai	Goatfish	Jacks	Mullet	Emperors	Rudderfish	Parrotfish
1985	71,019	54,067	93,768	0	17,946	8,671	4,264	26,046	6,245	14,992
1986	60,497	9,109	6,229	0	37,606	11,794	12,854	10,236	6,123	3,993
1987	74,665	26,000	4,933	0	40,809	17,606	5,906	5,195	5,662	1,377
1988	65,455	22,969	7,593	0	26,678	8,557	13,955	13,936	15,504	3,452
1989	33,304	15,765	9,379	0	31,536	5,550	9,149	6,431	8,116	554
1990	25,985	15,973	5,093	0	15,159	4,871	9,641	6,183	9,561	1,527
1991	27,229	38,600	40,594	0	15,520	44,313	10,591	6,197	21,608	11,970
1992	48,450	30,397	11,114	0	14,553	2,815	15,182	10,983	9,104	5,547
1993	15,598	9,106	6,724	0	10,199	3,270	4,472	5,537	2,188	3,339
1994	28,537	29,842	12,677	0	8,003	5,715	9,781	8,194	320	5,189

Fishery Performance

1995	68,150	15,855	7,966	0	12,856	6,083	5,413	11,736	2,475	8,387
1996	30,569	16,365	4,031	0	6,133	4,931	3,024	7,205	2,997	3,900
1997	35,075	20,921	7,425	0	5,638	11,571	3,678	8,295	3,690	5,489
1998	47,832	12,584	29,751	0	7,485	13,658	3,439	11,414	20,250	11,137
1999	67,325	24,757	22,422	0	8,295	34,539	4,999	10,080	6,022	20,155
2000	12,294	11,376	3,940	0	4,281	3,372	1,409	4,632	5,671	2,046
2001	15,010	5,845	10,165	0	4,887	8,593	1,011	5,185	754	1,344
2002	8,036	6,622	1,934	0	2,582	4,954	1,492	3,328	10,706	1,458
2003	27,732	12,602	16,589	0	7,615	7,799	1,495	5,135	2,111	8,533
2004	20,297	7,566	5,660	0	2,820	12,765	677	2,353	2,317	2,613
2005	11,572	3,578	11,459	0	7,079	11,155	2,907	3,547	734	1,931
2006	28,996	11,572	2,689	0	9,008	8,594	531	1,367	11,950	3,083
2007	18,694	11,056	6,875	0	1,381	12,301	1,096	5,483	944	926
2008	19,072	12,988	1,390	0	698	10,330	4,720	1,471	1,973	2,049
2009	201,749	86,424	14,721	0	2,211	27,106	45,336	5,705	911	979
2010	38,327	8,257	1,489	0	2,091	4,181	2,568	2,783	8,283	1,000
2011	12,343	9,443	1,099	0	8,193	29,650	2,195	5,724	164	3,234
2012	7,820	2,630	9,848	0	13,338	80,189	14,455	5,974	1,542	951
2013	43,947	26,221	5,338	0	34,187	36,409	4,750	3,422	139	619
2014	4,194	4,349	666	0	3,715	19,022	70	8,742	387	486
2015	15,609	5,654	22,082	0	9,515	9,023	603	3,962	863	2,527
2016	17,916	8,442	3,795	0	4,392	3,750	719	2,032	736	1,394
2017	28,873	6,070	2,636	0	2,761	14,558	2,584	700	358	410
2018	16,927	38,164	1,254	0	7,560	20,941	59	9,653	37	1,422
10 yr avg	19,565	38,771	6,293	0	8,796	24,483	7,334	4,870	1,342	1,302
10 yr SD	24,715	55,666	6,787	0	9,153	21,215	13,297	2,706	2,354	866
20 yr avg	15,181	30,837	7,303	0	6,830	17,962	4,684	4,564	2,830	2,858
20 yr SD	18,441	41,739	6,747	0	7,056	17,357	9,829	2,583	3,569	4,321

1.2.8 Catch-per-Unit-Effort (CPUE) Statistics

This section summarizes the estimates for catch-per-unit effort in the boat and shore-based fisheries. The boat-based fisheries include the bottomfishing (handline gear), spearfishing (SCUBA and snorkel), gillnets, and troll that comprise 83% of the total catch. Trolling methods are primarily a pelagic fishing method but also catches coral reef fishes like jacks and gray jobfish. The shore-based fisheries include the hook-and-line, throw or cast nets, gillnets, spear, and hook-and-gaff that comprise 88% of the total coral reef fish catch. CPUE is reported as pounds per gear-hours for the shore-based methods whereas in the boat-based methods it's pounds per trip.

Calculations: CPUE is calculated from interview data by gear type using $\sum \operatorname{catch} / \sum$ (hours fished*number of fishers) for boat based and $\sum \operatorname{catch} / \sum$ (hours fished*number of gears used) for shore based. If the value is blank (empty), then there was no interview collected for that method. Landings from interviews without fishing hours are excluded from the calculations.

Table 34. CPUE time series for dominant fishing methods in Guam shore-based fisheries	
CPUE from 1984-2018	

V		Shore-E	Based Gear CPUE	(lbs./gear hour)	
Year	H&L	Cast Net	Gill Net	Spear	H&G
1984	0.0106	0.1339	0.3507	0.7500	1.1250
1985	0.0029	0.0224	0.0509	0.0773	0.0975
1986	0.0040	0.0224	0.0441	0.0962	0.2393
1987	0.0074	0.0208	0.0515	0.0747	0.0354
1988	0.0027	0.0213	0.0764	0.0805	0.2444
1989	0.0022	0.0136	0.0548	0.0627	0.2545
1990	0.0011	0.0171	0.0309	0.0590	0.0551
1991	0.0017	0.0128	0.0305	0.0918	0.0690
1992	0.0005	0.0122	0.0255	0.0986	0.0327
1993	0.0003	0.0060	0.0181	0.1621	0.0347
1994	0.0004	0.0160	0.0208	0.0370	0.0734
1995	0.0005	0.0064	0.0117	0.0734	0.0313
1996	0.0003	0.0158	0.0220	0.0659	0.0938
1997	0.0004	0.0060	0.0134	0.0415	0.0544
1998	0.0005	0.0082	0.0067	0.0544	0.1094
1999	0.0005	0.0076	0.0124	0.0316	0.1925
2000	0.0004	0.0083	0.0189	0.0476	0.0381
2001	0.0004	0.0045	0.0204	0.0575	0.2946
2002	0.0007	0.0152	0.0184	0.0906	0.4500
2003	0.0007	0.0034	0.0359	0.1844	0.0256
2004	0.0010	0.0051	0.0290	0.1257	0.2222
2005	0.0005	0.0019	0.0781	0.1333	0.2593
2006	0.0015	0.0169	0.0373	0.1035	0.2889
2007	0.0007	0.0071	0.1264	0.1555	0.4286

2008	0.0009	0.0064	0.0738	0.0489	0.1333
2009	0.0010	0.1468	0.1294	0.1222	0.3524
2010	0.0003	0.0138	0.2598	0.2708	0.2115
2011	0.0018	0.0203	0.1245	0.7429	0.5200
2012	0.0020	0.0188	0.1356	0.1527	0.2143
2013	0.0017	0.0438	0.1176	0.0988	0.2639
2014	0.0030	0.0141	0.4388	0.4688	0.2857
2015	0.0102	0.0147	0.0673	0.3298	0.4231
2016	0.0006	0.0051	0.0269	0.0290	0.4000
2017	0.0013	0.0377	0.2016	0.0806	0.0577
2018	0.0017	0.0935	1.2284	0.9091	0.0000
10 yr avg	0.0024	0.0409	0.2730	0.3205	0.3032
10 yr SD	0.0027	0.0428	0.3368	0.2844	0.1298
20 yr avg	0.0015	0.0243	0.1590	0.2092	0.2664
20 yr SD	0.0021	0.0347	0.2651	0.2324	0.1377

Table 35. CPUE time series for dominant fishing methods in Guam boat-based fisheriesCPUE from 1982-2018

Year	Boat	-Based Gear C	PUE (lbs./gea	r hours)	
	Bottomfishing	Spear	SCUBA	Gill Net	Troll
1982	0.0293	0.4800	0.0000	0.0000	0.0162
1983	0.0293	0.2198	0.3956	0.0000	0.0154
1984	0.0230	0.1159	0.3553	3.0000	0.0135
1985	0.0099	0.2025	0.1598	0.5357	0.0098
1986	0.0210	0.2915	0.4402	0.5000	0.0092
1987	0.0223	0.2312	0.5550	0.3195	0.0086
1988	0.0114	0.1518	0.2097	0.6465	0.0057
1989	0.0106	0.1194	0.2343	0.4050	0.0048
1990	0.0116	0.1515	0.6306	0.3795	0.0037
1991	0.0116	0.1691	0.4482	0.3110	0.0051
1992	0.0106	0.0794	0.1164	0.2381	0.0034
1993	0.0102	0.0637	0.4413	0.6389	0.0041
1994	0.0109	0.0766	0.3632	0.3262	0.0039
1995	0.0029	0.0568	0.2424	0.1213	0.0032
1996	0.0035	0.0586	0.2149	0.4762	0.0034
1997	0.0029	0.0706	0.4460	0.2965	0.0040
1998	0.0027	0.0252	0.3077	0.1199	0.0035
1999	0.0035	0.0334	0.2841	0.6192	0.0031
2000	0.0052	0.0532	0.2758	0.0661	0.0042
2001	0.0071	0.1912	0.3202	0.3005	0.0069
2002	0.0069	0.0857	0.5128	0.4275	0.0117
2003	0.0172	0.1880	0.7129	1.8968	0.0176

2 004	0.01.42	0.000	0.50(0)	1.0105	0.0154
2004	0.0143	0.2008	0.7860	1.0195	0.0174
2005	0.0171	0.0848	0.7361	0.4407	0.0104
2006	0.0230	0.1134	0.3905	1.7500	0.0114
2007	0.0226	0.2217	4.0816	0.5214	0.0136
2008	0.0162	0.1087	0.6206	1.5606	0.0100
2009	0.0164	0.0795	1.7182	0.2311	0.0083
2010	0.0081	0.0828	0.3333	0.3787	0.0067
2011	0.0270	0.2714	2.6571	0.5000	0.0095
2012	0.0341	0.8788	3.0000	10.3504	0.0185
2013	0.0254	0.1598	0.9375	0.4643	0.0147
2014	0.0172	0.1629	1.5469	1.3313	0.0109
2015	0.0163	0.1729	0.5435	0.9467	0.0125
2016	0.0137	0.0961	0.2078	0.1993	0.0074
2017	0.0151	0.0501	0.8095	0.3646	0.0065
2018	0.0076	0.1607	0.4026	0.6667	0.0098
10 yr avg	0.0181	0.2115	1.2156	1.5433	0.0105
10 yr SD	0.0080	0.2305	0.9367	2.9540	0.0036
20 yr avg	0.0157	0.1698	1.0439	1.2018	0.0106
20 yr SD	0.0078	0.1742	1.0283	2.1617	0.0042

1.2.9 Effort Statistics

This section summarizes the effort trends in the coral reef and bottomfish fishery. Fishing effort trends provide insights on the level of fishing pressure through time. Effort information is provided for the top shore-based and boat-based fishing methods that contribute to a majority of the annual catch. Trolling method is included in this report because coral reef MUS is also caught using trolling method. Pelagic MUS caught using trolling method is reported in the Pelagic Annual/SAFE report module.

Calculations: Effort estimates (hours) are generated by summing the effort data collected from interviews by gear type. For shore-based estimates, data collection started in 1985.

Vara		Shore-Base	ed Gear Ho	ours		Boat-Based Gear Hours					
Year	Cast Net	H&L	Gill Net	Spear	H&G	Bottom	Spear	Scuba	Gill Net	Troll	
1982	15	400	0	208	0	81,620	65	1	0	3,046,932	
1983	0	0	0	0	0	59,512	143	527	0	2,615,565	
1984	224	2,914	345	24	8	131,159	6,156	630	15	2,548,752	
1985	5,673	82,992	10,658	15,096	400	532,350	4,092	5,304	21	4,709,880	
1986	3,430	52,899	14,378	3,410	117	98,112	1,888	304	2	3,019,692	
1987	4,902	18,204	8,550	9,964	4,779	113,442	2,257	624	493	3,946,710	
1988	8,487	34,662	9,735	6,264	225	295,911	6,375	1,920	44	9,291,900	
1989	15,810	42,120	6,336	2,184	224	331,525	4,416	2,655	100	7,495,286	
1990	13,534	253,492	20,240	2,679	272	249,280	1,794	1,200	640	11,182,260	
1991	13,932	368,466	17,835	1,862	1,638	197,964	2,016	2,142	918	9,667,476	
1992	13,900	739,440	30,000	1,440	490	202,400	5,893	6,820	414	11,705,316	
1993	12,604	796,708	18,040	1,666	1,701	270,758	8,961	2,520	324	11,355,743	
1994	6,048	978,945	21,070	7,520	722	383,520	8,827	3,569	1,300	11,652,024	
1995	19,840	673,200	40,608	7,221	384	1,258,615	24,497	16,268	5,520	17,307,210	
1996	4,875	939,333	8,601	2,684	96	1,351,026	28,310	13,959	5,244	20,231,220	
1997	19,760	1,120,575	31,692	5,328	294	1,017,597	13,144	3,713	3,080	13,812,489	
1998	21,976	795,960	73,066	15,006	448	1,526,630	62,160	10,126	3,348	16,974,006	
1999	14,351	1,234,925	52,116	26,010	504	1,230,288	20,574	12,060	1,122	12,031,104	
2000	14,157	838,240	27,930	9,416	315	622,364	15,930	10,856	8,064	11,211,280	
2001	15,125	827,519	16,464	3,968	224	483,060	5,940	4,860	1,008	6,544,218	
2002	7,614	227,813	14,691	2,352	20	278,604	5,544	960	384	2,681,143	
2003	18,900	345,598	2,950	1,394	195	148,160	3,596	1,369	147	1,405,206	
2004	7,885	195,202	4,662	1,050	36	168,413	2,295	1,044	66	2,336,400	
2005	9,400	167,334	1,242	360	54	190,400	4,368	480	253	2,290,578	
2006	6,336	96,074	2,091	425	45	147,125	3,618	117	2	2,796,184	
2007	2,948	343,952	546	418	70	92,820	1,550	49	154	2,443,480	

Table 36. Time series of effort estimates (gear hours or no. trips for bottomfish) from Guam coral reef and bottomfish fisheriesfor 1982-2018

Fishery Performance

2008	5,976	164,300	1,720	266	15	127,710	8,393	289	264	2,771,390
2009	4,026	185,298	255	180	210	285,891	6,072	100	532	6,262,704
2010	7,313	141,860	408	144	156	370,360	5,250	6	168	7,455,312
2011	5,184	103,653	988	70	25	136,284	1,800	196	3	3,945,474
2012	6,006	122,850	1,128	550	70	30,084	504	65	45	1,194,173
2013	4,221	81,774	672	729	72	47,061	1,710	24	1,120	3,601,465
2014	4,544	130,062	196	224	28	144,690	3,528	40	210	4,490,376
2015	5,858	227,766	3,358	1,980	156	65,262	2,842	391	65	5,278,731
2016	14,040	183,219	4,717	5,520	20	170,159	6,210	6,732	189	9,152,541
2017	3,320	191,836	506	484	104	176,253	8,051	140	64	7,157,862
2018	3,713	144,364	162	88	0	349,272	3,960	3,200	15	6,807,570
10 yr avg	5,823	151,268	1,239	997	84	177,532	3,993	1,089	241	5,534,621
10 yr SD	2,972	42,622	1,464	1,601	67	115,162	2,259	2,096	328	2,186,818
20 yr avg	8,046	297,682	6,840	2,781	116	263,213	5,587	2,149	694	5,092,860
20 yr SD	4,572	298,257	12,497	5,792	122	265,257	4,757	3,568	1,727	3,082,233

1.2.10 Participants

This section summarizes the estimated number of participants in each fishery. The information presented here can be used in the impact analysis of potential amendments in the FEPs associated with the bottomfish and coral reef fisheries. The trend in the number of participants over time can also be used as an indicator for fishing pressure.

Calculations: For boat-based data, the estimated number of participants is calculated by multiplying the average number of fishers per trip by the number of trips per day, and then by the number of dates in the calendar year by gear type. The total is a combination of weekend and weekday stratum estimates.

For shore-based data, the estimated number of participants is calculated by using an average number of fishers per day multiplied by the numbers of dates in the calendar year across gear types. The total is a combination of weekend, weekday, day, and night stratum estimates.

V	Botto	mfish	C	oral Reef	Boat-Base	d		Coral R	eef Shore-	Based	
Year	# Fishers	# Gears	Spear	SCUBA	Gill Net	Troll	H&L	Throw	Gill Net	Spear	H&G
1982	865	798	1,095	365	0	920					
1983	820	709	852	533	0	955					
1984	977	847	1,519	701	732	1,022	101,016	18,141	18,523	7,065	2,101
1985	971	883	1,326	852	1,460	952	120,562	32,345	37,904	21,282	3,931
1986	918	794	913	1,049	1,095	975	90,441	21,308	46,996	19,236	2,072
1987	874	829	712	830	1,095	964	108,511	25,715	49,381	18,297	1,978
1988	975	903	987	864	824	1,151	98,891	23,518	42,645	25,360	5,242
1989	931	869	1,156	1,065	730	1,122	125,421	26,558	28,505	10,985	4,310
1990	1,002	883	1,338	1,116	1,004	1,247	101,800	23,666	32,991	11,233	2,896
1991	1,049	843	1,241	1,136	962	1,287	215,674	39,177	64,483	15,087	6,002
1992	1,067	886	1,330	1,243	1,098	1,335	186,939	38,170	76,740	18,606	3,673
1993	1,028	910	1,191	1,359	776	1,236	189,891	41,884	46,720	19,527	6,296
1994	1,103	947	1,204	1,278	791	1,217	217,996	33,762	43,891	18,615	4,015
1995	1,327	1,275	1,062	1,362	1,137	1,239	246,531	37,900	48,269	21,453	7,956
1996	1,609	1,562	1,074	1,311	864	1,253	252,664	24,115	32,650	16,408	7,127
1997	1,816	1,581	1,033	1,406	1,000	1,215	210,044	27,784	29,222	12,944	2,550
1998	1,393	1,305	1,046	1,396	960	1,164	158,460	37,500	54,300	22,920	6,780
1999	1,441	1,387	1,181	1,426	1,121	1,121	217,454	24,670	46,892	37,939	8,116
2000	1,391	1,321	1,075	1,303	1,236	1,103	129,407	18,666	23,163	17,202	3,712
2001	1,043	1,078	1,178	1,309	1,235	1,090	120,039	18,980	17,839	12,957	3,513
2002	1,197	1,037	1,019	1,294	986	1,030	90,023	17,893	12,301	7,688	1,258
2003	924	1,092	1,344	1,488	1,095	1,127	89,197	21,763	15,239	11,908	958
2004	1,229	1,121	990	1,298	854	1,011	80,756	13,365	17,001	10,720	708
2005	974	965	1,019	1,251	803	1,114	75,783	17,109	11,452	7,574	3,422
2006	918	956	1,153	949	730	1,068	71,494	21,033	14,691	12,729	3,376
2007	1,217	1,034	1,011	1,278	730	1,166	70,126	15,512	10,631	8,669	4,152

Table 37. Number of boats participating in the Guam bottomfish fishery and number of gears in the Guam boat- and shore-
based coral reef fisheries from 1982-2018

Fishery Performance

2008	971	950	1,168	1,220	961	1,141	76,860	14,365	9,150	7,961	2,287
2009	915	1,022	1,173	1,338	1,049	954	89,557	17,194	10,158	6,477	4,194
2010	964	1,040	1,081	1,095	1,773	1,024	72,969	14,491	9,133	8,760	2,609
2011	1,008	1,001	1,363	1,369	730	979	74,916	14,463	7,026	6,387	2,601
2012	1,001	953	1,007	1,708	952	992	98,008	15,277	14,895	7,877	2,721
2013	1,113	1,150	1,430	973	1,209	925	73,062	14,538	15,330	12,814	1,957
2014	1,135	1,262	1,417	973	1,399	947	63,891	12,664	8,950	10,617	1,857
2015	1,180	1,095	1,417	2,281	1,186	956	53,746	11,771	11,406	11,041	1,962
2016	1,146	1,177	1,127	1,763	1,412	908	53,436	11,575	10,111	12,215	3,065
2017	841	1,038	1,189	1,916	1,095	905	58,178	11,664	6,665	9,712	952
2018	1,158	1,195	1,422	1,757	1,825	953	58,617	8,480	4,194	7,642	373
10 yr avg	1,093	1,046	1,263	1,517	1,263	954	69,638	13,212	9,787	9,354	2,229
10 yr SD	94	111	155	415	329	35	14,329	2,344	3,308	2,174	1,022
20 yr avg	1,094	1,088	1,188	1,399	1,119	1,026	85,876	15,774	13,811	11,444	2,690
20 yr SD	120	156	152	330	303	82	35,887	3,847	8,724	6,632	1,674

Year	Botto	mfish		Coral Reef	Boat-Based			Coral R	al Reef Shore-Based			
rear	# Gears	# Trips	Spear	SCUBA	Gill Net	Troll	H&L	Castnet	Gill net	Spear	H&G	
1982	798	40	949	365	0	1,506						
1983	709	210	669	477	0	1,428						
1984	847	242	1,391	549	1,098	1,392	100,252	16,995	10,503	7,065	2,864	
1985	883	857	1,191	791	365	1,371	120,562	24,595	17,408	20,215	4,661	
1986	794	633	834	867	365	1,423	91,270	18,289	21,959	19,236	3,847	
1987	829	852	675	863	1,241	1,489	108,016	21,759	25,008	16,672	3,320	
1988	903	1,449	832	703	366	1,479	99,458	21,535	19,197	23,943	9,917	
1989	869	1,338	973	897	365	1,459	128,341	24,681	13,766	10,707	6,605	
1990	883	943	933	1,074	730	1,466	102,789	21,335	14,977	10,950	3,744	

1991	843	1,125	876	852	597	1,392	221,109	35,446	28,876	14,600	5,678
1992	886	945	866	839	471	1,447	193,008	33,219	35,056	18,287	4,073
1993	910	1,495	836	906	411	1,406	195,366	35,496	23,816	19,163	9,034
1994	947	1,520	898	947	791	1,378	238,436	29,565	21,809	18,068	4,015
1995	1,275	2,049	854	1,082	501	1,351	250,643	32,895	23,598	21,274	10,995
1996	1,562	1,754	880	1,075	673	1,399	264,597	21,048	15,331	15,994	9,944
1997	1,581	1,700	944	1,068	595	1,405	198,473	24,515	12,356	10,787	3,073
1998	1,305	2,209	798	1,113	487	1,346	159,600	33,840	21,840	22,260	7,260
1999	1,387	2,103	909	1,137	574	1,313	212,623	22,480	21,836	36,844	10,564
2000	1,321	1,750	919	1,053	712	1,361	128,937	16,941	11,085	15,738	3,817
2001	1,078	1,635	1,095	1,019	786	1,365	121,362	17,702	9,079	12,501	3,969
2002	1,037	1,230	793	995	584	1,321	93,984	16,914	6,337	7,688	1,258
2003	1,092	1,175	1,029	1,039	426	1,306	95,584	20,896	8,030	11,954	958
2004	1,121	1,013	969	1,198	366	1,320	85,809	13,034	7,839	10,484	708
2005	965	896	791	1,043	402	1,391	83,950	16,288	6,479	7,528	3,331
2006	956	863	1,037	657	365	1,365	75,783	20,349	8,623	12,182	3,376
2007	1,034	806	870	1,278	803	1,382	75,144	11,452	6,251	8,349	4,243
2008	950	953	1,084	1,037	549	1,340	75,945	13,679	4,849	7,869	2,287
2009	1,022	1,110	899	1,217	639	1,284	96,313	16,868	6,384	6,384	4,194
2010	1,040	1,316	946	1,095	365	1,201	78,654	13,326	5,638	8,294	2,656
2011	1,001	836	1,095	1,278	1,095	1,119	81,121	13,824	4,517	6,159	2,327
2012	953	767	961	1,586	366	1,099	105,408	14,369	9,548	7,877	2,721
2013	1,150	741	1,156	730	456	1,205	85,224	13,839	8,294	12,721	1,957
2014	1,262	702	1,353	608	608	1,251	69,461	12,426	5,523	10,236	1,857
2015	1,095	598	1,245	2,099	456	1,217	57,807	11,634	7,391	10,996	1,871
2016	1,177	783	1,010	1,647	471	1,163	60,344	11,255	7,686	12,215	3,065
2017	1,038	849	977	1,278	365	1,234	63,367	11,283	4,475	9,760	952
2018	1,195	697	1,153	1,460	1,825	1,178	64,768	8,014	2,796	7,642	373
10 yr avg	840	1,093	1,080	1,300	665	1,195	76,247	12,684	6,225	9,228	2,197
10 yr SD	204	94	139	415	439	54	15,165	2,244	1,934	2,197	1,020

Fishery Performance

20 yr avg	1,041	1,094	1,015	1,173	611	1,271	90,579	14,829	7,633	11,171	2,824
20 yr SD	386	120	140	338	335	87	33,498	3,587	3,787	6,380	2,119

1.2.11 Bycatch Estimates

This section focuses on MSA § 303(a)(11), which requires that all FMPs establish a standardized reporting methodology to assess the amount and type of bycatch occurring in the fishery, and include conservation and management measures that, to the extent practicable, minimize bycatch and bycatch mortality. The MSA § 303(a)(11) standardized reporting methodology is commonly referred to as a "Standardized Bycatch Reporting Methodology" (SBRM) and was added to the MSA by the Sustainable Fisheries Act of 1996 (SFA). The Council implemented omnibus amendments to FMPs in 2003 to address MSA bycatch provisions and establish SBRMs.

The following are recent bycatch estimates for the boat-based non-bottomfishing gear (Table 38), bottomfish fishery (Table 39), and shore-based fisheries with all gears combined (Table 40).

Calculations: The number caught is the sum of the total number of individuals found in the raw data including bycatch. The number kept is the total number of individuals in the raw data that are not marked as bycatch. The number released is bycatch caught minus the number of bycatch kept. Percent bycatch is the sum of all bycatch divided by the total catch.

Year	# Caught	Kept	Released	% Bycatch
1982	5,388	5,388	0	0.0000
1983	3,581	3,581	0	0.0000
1984	5,584	5,584	0	0.0000
1985	8,138	8,138	0	0.0000
1986	4,829	4,829	0	0.0000
1987	4,895	4,895	0	0.0000
1988	8,113	8,113	0	0.0000
1989	12,393	12,393	0	0.0000
1990	7,645	7,645	0	0.0000
1991	9,338	9,338	0	0.0000
1992	7,352	7,352	0	0.0000
1993	9,398	9,398	0	0.0000
1994	9,843	9,843	0	0.0000
1995	17,776	17,776	0	0.0000
1996	20,931	20,931	0	0.0000
1997	19,108	19,108	0	0.0000
1998	16,428	16,428	0	0.0000
1999	19,827	19,827	0	0.0000
2000	23,373	23,335	38	0.0016
2001	10,409	10,344	65	0.0062
2002	5,560	5,520	40	0.0072
2003	8,543	8,538	5	0.0006
2004	5,851	5,839	12	0.0021
2005	4,012	4,006	6	0.0015
2006	7,176	7,172	4	0.0006
2007	5,611	5,538	73	0.0130
2008	9,199	9,198	1	0.0001
2009	11,710	11,707	3	0.0003
2010	8,588	8,588	0	0.0000
2011	21,232	21,231	1	0.0000
2012	12,200	12,200	0	0.0000
2013	11,834	11,806	28	0.0024
2014	8,814	8,789	25	0.0028
2015	8,995	8,995	0	0.0000
2016	11,031	11,025	6	0.0005
2017	8,645	8,643	2	0.0002
2018	9,580	9,578	2	0.0002
10 yr avg	11,263	11,256	7	0.0006

Table 38. Time series of bycatch estimates in Guam boat-based non-bottomfishing fisheriesfrom 1982-2018

10 yr SD	3,589	3,590	10	0.0010
20 yr avg	10,610	10,594	16	0.0020
20 yr SD	5,078	5,080	22	0.0032

Table 39. Time series	of bycatch estimate	es in the Guam	bottomfish fishery	from 1982-2018
				110111 1/01 2010

Year	# Caught	Kept	Released	% Bycatch
1982	1,597	1,597	0	0.0000
1983	1,507	1,507	0	0.0000
1984	3,347	3,347	0	0.0000
1985	4,840	4,840	0	0.0000
1986	1,624	1,624	0	0.0000
1987	2,519	2,519	0	0.0000
1988	3,002	3,002	0	0.0000
1989	3,562	3,562	0	0.0000
1990	2,870	2,870	0	0.0000
1991	2,783	2,783	0	0.0000
1992	2,527	2,527	0	0.0000
1993	2,893	2,893	0	0.0000
1994	3,730	3,730	0	0.0000
1995	4,985	4,985	0	0.0000
1996	5,244	5,244	0	0.0000
1997	4,342	4,342	0	0.0000
1998	5,138	5,138	0	0.0000
1999	4,938	4,938	0	0.0000
2000	3,905	3,373	532	0.1362
2001	3,896	3,273	623	0.1599
2002	2,504	2,151	353	0.1410
2003	1,888	1,697	191	0.1012
2004	1,804	1,682	122	0.0676
2005	1,706	1,640	66	0.0387
2006	2,188	2,043	145	0.0663
2007	1,372	1,233	139	0.1013
2008	1,657	1,536	121	0.0730
2009	2,851	2,774	77	0.0270
2010	2,588	2,559	29	0.0112
2011	2,128	2,083	45	0.0211
2012	924	887	37	0.0400
2013	1,222	1,178	44	0.0360
2014	2,452	2,283	169	0.0689
2015	1,420	1,350	70	0.0493
2016	1,674	1,627	47	0.0281

2017	2,313	2,287	26	0.0112
2018	1,521	1,492	29	0.0191
10 yr avg	1,909	1,852	57	0.0312
10 yr SD	612	600	41	0.0171
20 yr avg	2,248	2,104	143	0.0599
20 yr SD	985	919	165	0.0454

Table 40. Time series of b	vcatch estimates in the Guam	shore-based fishery from 1984-2018
	J	,

Year	# Caught	Kept	Released	% Bycatch
1984	1,845	1,845	0	0.0000
1985	10,200	10,200	0	0.0000
1986	9,172	9,169	3	0.0003
1987	9,860	9,860	0	0.0000
1988	16,199	16,199	0	0.0000
1989	8,802	8,802	0	0.0000
1990	8,817	8,817	0	0.0000
1991	9,880	9,880	0	0.0000
1992	6,753	6,753	0	0.0000
1993	30,916	30,916	0	0.0000
1994	6,013	6,013	0	0.0000
1995	8,360	8,360	0	0.0000
1996	3,385	3,385	0	0.0000
1997	9,233	9,216	17	0.0018
1998	11,589	11,580	9	0.0008
1999	12,592	12,530	62	0.0049
2000	7,861	7,831	30	0.0038
2001	8,653	8,593	60	0.0069
2002	3,122	3,114	8	0.0026
2003	5,364	5,345	19	0.0035
2004	2,655	2,611	44	0.0166
2005	2,684	2,654	30	0.0112
2006	3,928	3,851	77	0.0196
2007	3,361	3,238	123	0.0366
2008	5,359	5,282	77	0.0144
2009	3,254	3,160	94	0.0289
2010	4,321	4,222	99	0.0229
2011	5,262	5,187	75	0.0143
2012	5,590	5,559	31	0.0055
2013	3,300	2,893	407	0.1233
2014	4,732	4,622	110	0.0232

2015	4,823	4,775	48	0.0100
2016	3,907	3,785	122	0.0312
2017	7,804	7,798	6	0.0008
2018	16,981	16,965	16	0.0009
10 yr avg	5,998	5,897	101	0.0261
10 yr SD	3,868	3,917	109	0.0341
20 yr avg	5,778	5,701	77	0.0191
20 yr SD	3,501	3,526	84	0.0261

1.2.12 Number of Federal Permit Holders

In Guam, the following Federal permits are required for fishing in the EEZ:

1.2.12.1 Guam Large Vessel Bottomfish Permit

The Code of Federal Regulations (CFR), Title 50, Part 665 requires the following Federal permits for Guam fisheries in the exclusive economic zone (EEZ) under the Mariana FEP:

1.2.12.2 Guam Large Vessel Bottomfish Permit

Regulations require this permit for any large vessel (50 feet or longer in overall length) fishing for, landing, or transshipping bottomfish MUS or bottomfish ecosystem component species (ECS) in the EEZ seaward of Guam.

1.2.12.3 Special Coral Reef Ecosystem Permit

Regulations require the coral reef ecosystem special permit for anyone fishing for coral reef ECS in a low-use marine protected area (MPA), fishing for species on the list of Potentially Harvested Coral Reef Taxa, or using fishing gear not specifically allowed in the regulations. NMFS will make an exception to this permit requirement for any person issued a permit to fish under any fishery ecosystem plan who incidentally catches Guam coral reef ECSS while fishing for bottomfish MUS, crustacean ECS, western Pacific pelagic MUS, precious coral, or seamount groundfish. Regulations require a transshipment permit for any receiving vessel used to land or transship potentially harvested coral reef taxa, or any coral reef ecosystem ECS caught in a low-use MPA.

1.2.12.4 Western Pacific Precious Corals Permit

Regulations require this permit for anyone harvesting or landing black, bamboo, pink, red, or gold corals in the EEZ in the Western Pacific.

1.2.12.5 Western Pacific Crustaceans Permit (Lobster or Deepwater Shrimp)

Regulations require a permit by the owner of a U.S. fishing vessel used to fish for lobster or deepwater shrimp in the EEZ around American Samoa, Guam, Commonwealth of the Northern Mariana Islands (CNMI), Hawaii, and the Pacific Remote Islands Areas (PRIA).

There is no record of special coral reef or precious coral fishery permits issued for the EEZ around Guam since 2007. Table 41 provides the number of permits issued for Guam fisheries

between 2009 and 2018. Historical data are from the PIFSC and 2018 data are from the PIRO Sustainable Fisheries Division permits program as of February 27, 2019.

Table 41. Number of federal permits holders for the crustacean and bottomfish fisheries ofGuam from 2009-2018

Guam Fisheries	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Lobster	4*	0	0	0	0	0	0	1**	0	1**
Shrimp	0	2*	1*	0	0	0	0	1	0	0
Bottomfish	2	1	1	4	2	2	1	1	1	1

*Permits apply to multiple areas and may include American Samoa, Guam, CNMI, and PRIA. **Area 5 CNMI and Guam

1.2.13 Status Determination Criteria

1.2.13.1 Bottomfish Fishery

Overfishing criteria and control rules are specified and applied to individual species within the multi-species stock whenever possible. When this is not possible, they are based on an indicator species for the multi-species stock. It is important to recognize that individual species would be affected differently based on this type of control rule, and it is important that for any given species fishing, mortality does not currently exceed a level that would result in excessive depletion of that species. No indicator species are being used for the bottomfish multi-species stock complexes and the coral reef species complex. Instead, the control rules are applied to each stock complex as a whole.

The MSY control rule is used as the maximum fishing mortality threshold (MFMT). The MFMT and minimum stock size threshold (MSST) are specified based on recommendations in Restrepo et al. (1998) and both are dependent on the natural mortality rate (M) (Table 42). The value of M used to determine the reference point values are not specified in this document. The latest estimate, published annually in the SAFE report, is used and the value is occasionally re-estimated using the best available information. The range of M among species within a stock complex is taken into consideration when estimating and choosing the M to be used for the purpose of computing the reference point values.

In addition to the thresholds MFMT and MSST, a warning reference point, B_{FLAG} , is specified at some point above the MSST to provide a trigger for consideration of management action prior to B reaching the threshold. MFMT, MSST, and B_{FLAG} are specified as indicated in Table 44.

Table 42. Overfishing threshold specifications for Guam BMUS

MFMT	MSST	B _{FLAG}
$F(B) = \frac{F_{MSY}B}{c B_{MSY}} \text{ for } B \le c B_{MSY}$	$c\mathrm{B}_{\scriptscriptstyle\mathrm{MSY}}$	\mathbf{B}_{MSY}
$F(B) = F_{MSY} \qquad \text{for } B > c B_{MSY}$		

where $c = \max(1-M, 0.5)$

Standardized values of fishing effort (E) and catch-per-unit-effort (CPUE) are used as proxies for F and B, respectively, so E_{MSY} , CPUE_{MSY}, and CPUE_{FLAG} are used as proxies for F_{MSY} , B_{MSY} , and B_{FLAG} , respectively.

In cases where reliable estimates of $CPUE_{MSY}$ and E_{MSY} are not available, they will be estimated from catch and effort times series, standardized for all identifiable biases. $CPUE_{MSY}$ would be calculated as half of a multi-year average reference CPUE, called $CPUE_{REF}$. The multi-year reference window would be objectively positioned in time to maximize the value of $CPUE_{REF}$. E_{MSY} would be calculated using the same approach or, following Restrepo et al. (1998), by setting E_{MSY} equal to E_{AVE} , where E_{AVE} represents the long-term average effort prior to declines in CPUE. When multiple estimates are available, the more precautionary one is used.

Since the MSY control rule specified here applies to multi-species stock complexes, it is important to ensure that no particular species within the complex has a mortality rate that leads to excessive depletion. In order to accomplish this, a secondary set of reference points is specified to evaluate stock status with respect to recruitment overfishing. A secondary "recruitment overfishing" control rule is specified to control fishing mortality with respect to that status. The rule applies only to those component stocks (species) for which adequate data are available. The ratio of a current spawning stock biomass proxy (SSB_{Pt}) to a given reference level (SSB_{PREF}) is used to determine if individual stocks are experiencing recruitment overfishing. SSBP is CPUE scaled by percent mature fish in the catch. When the ratio SSB_{Pt}/SSB_{PREF}, or the "SSBP ratio" (SSBPR) for any species drops below a certain limit (SSBPR_{MIN}), that species is considered to be recruitment overfished and management measures will be implemented to reduce fishing mortality on that species. The rule applies only when the SSBP ratio drops below the SSBPR_{MIN}, but it will continue to apply until the ratio achieves the "SSBP ratio recovery target" (SSBPR_{TARGET}), which is set at a level no less than SSB_{PRMIN}. These two reference points and their associated recruitment overfishing control rule, which prescribe a target fishing mortality rate (F_{RO-REBUILD}) as a function of the SSBP ratio, are specified as indicated in Table 43. Again, E_{MSY} is used as a proxy for F_{MSY} .

F _{RO-REBUILD}		SSBPR _{MIN}	SSBPR _{TARGET}	
F(SSBPR) = 0	for SSBPR ≤ 0.10			
$F(SSBPR) = 0.2 F_{MSY}$	for $0.10 < SSBPR \le SSBPR_{MIN}$	0 20	0 30	
$F(SSBPR) = 0.5 F_{MSY}$	for SSBPR_min < SSBPR \leq SSBPR_target	0.20	0.50	

Table 43. Rebuilding control rules for Guam BMUS

1.2.13.2 Coral Reef Fishery

Available biological and fishery data are poor for all coral reef ecosystem management unit species in the Mariana Islands. There is scant information on the life histories, ecosystem

dynamics, fishery impact, community structure changes, yield potential, and management reference points for many coral reef ecosystem species. Additionally, total fishing effort cannot be adequately partitioned between the various management unit species (MUS) for any fishery or area. Biomass, maximum sustainable yield, and fishing mortality estimates are not available for any single MUS. Once these data are available, fishery managers can establish limits and reference points based on the multi-species coral reef ecosystem as a whole.

When possible, the MSY control rule should be applied to the individual species in a multispecies stock. When this is not possible, MSY may be specified for one or more species; these values can then be used as indicators for the multi-species stock's MSY.

Individual species that are part of a multi-species complex will respond differently to an OYdetermined level of fishing effort (F_{OY}). Thus, for a species complex that is fished at F_{OY} , managers still must track individual species' mortality rates in order to prevent species-specific population declines that would lead to depletion.

For the coral reef fishery, the multi-species complex as a whole is used to establish limits and reference points for each area. When possible, available data for a particular species are used to evaluate the status of individual MUS stocks in order to prevent recruitment overfishing. When better data and the appropriate multi-species stock assessment methodologies become available, all stocks will be evaluated independently, without proxy.

1.2.13.2.1 Establishing Reference Point Values

Standardized values of catch per unit effort (CPUE) and effort (E) are used to establish limit and reference point values, which act as proxies for relative biomass and fishing mortality, respectively. Limits and reference points are calculated in terms of $CPUE_{MSY}$ and E_{MSY} included in Table 44.

Value	Proxy	Explanation
MaxFMT (F _{MSY})	E _{MSY}	0.91 CPUE _{MSY}
F _{OY}	0.75 E _{MSY}	suggested default scaling for target
B _{MSY}	CPUE _{MSY}	operational counterpart
B _{OY}	1.3 CPUE _{MSY}	simulation results from Mace (1994)
MinSST	0.7 CPUE _{MSY}	suggested default (1-M)B _{MSY} with M=0.3*
B _{FLAG}	0.91 CPUE _{MSY}	suggested default (1-M)B _{OY} with M=0.3*

Table 44. Status determination criteria for the coral reef management unit species usingCPUE based proxies

When reliable estimates of E_{MSY} and $CPUE_{MSY}$ are not available, they are generated from time series of catch and effort values, standardized for all identifiable biases using the best available

analytical tools. $CPUE_{MSY}$ is calculated as one-half a multi-year moving average reference CPUE (CPUE_{REF}).

1.2.13.3 Current Stock Status

1.2.13.3.1 Bottomfish

Biological and other fishery data are poor for all bottomfish species in the Mariana Archipelago. Generally, data are only available on commercial landings by species and catch-per-unit-effort (CPUE) for the multi-species complexes as a whole. At this time it is not possible to partition these effort measures among the various bottomfish MUS. The most recent stock assessment update (Yau et al, 2015) for the Guam bottomfish management unit species complex (comprised of 17 species of shallow and deep species of snapper, grouper, jacks, and emperors) was based on estimate of total catch, an abundance index derived from the nominal CPUE generated from the creel surveys, and a fishery-independent point estimate of MSY from the Our Living Oceans Report (Humphreys and Moffitt, 1999, Moffitt and Humphreys, 2009). The assessment utilized a state-space surplus production model with explicit process and observation error terms (Meyer and Millar, 1999). Determinations of overfishing and overfished status can then be made by comparing current biomass and harvest rates to MSY level reference points. To date, the Guam BMUS is not subject to overfishing and is not overfished (Table 45).

Parameter	Value	Notes	Status
MSY	56.13 ± 7.79	Expressed in 1000 lbs. (± std. error)	
H ₂₀₁₃	0.123	Expressed in percentage	
H _{MSY}	0.352 ± 0.059	Expressed in percentage (\pm std. error)	
H/H _{MSY}	0.356		No overfishing occurring
B ₂₀₁₃	264.7	Expressed in thousand pounds	
B _{MSY}	162.3 ± 23.8	Expressed in 1000 lbs. (± std. error)	
B/ B _{MSY}	1.63		Not overfished

Table 45. Stock assessment parameters for the Guam BMUS complex (Yau et al., 2015)

1.2.13.3.2 Coral reef

The application of the SDCs for the management unit species in the coral reef fisheries is limited due to various challenges. First, the thousands of species included in the coral reef MUS makes the SDC and status determination impractical. Second, the CPUE derived from the creel survey is based on the fishing method and there is no species-specific CPUE information available. In order to allocate the fishing method level CPUE to individual species, the catch data (the value of catch is derived from CPUE hence there is collinearity) will have to be identified to species level and CPUE will be parsed out by species composition. The third challenge is that there is very little species-level identification applied to the creel surveys. There has been no attempt to estimate MSY for the coral reef MUS until the 2007 re-authorization of MSA that requires the Council to specify ACLs for species in the FEPs.

For ACL specification purposes, MSYs in the coral reef fisheries are determined by using the Biomass-Augmented Catch-MSY approach (Sabater and Kleiber, 2014). This method estimates MSY using plausible combination rates of population increase (denoted by r) and carrying capacity (denoted by k) assumed from the catch time series, resilience characteristics (from FishBase), and biomass from existing underwater census surveys done by the PIFSC. This method was applied to species complexes grouped by taxonomic families. The most recent MSY estimates are found in Table 46. The SSC utilized the MSYs for the coral reef MUS complexes as the OFLs.

Coral Reef MUS Complex	MSY (lbs.)
Selar crumenophthalmus – atulai or bigeye scad	61,300
Acanthuridae – surgeonfish	118,000
Carangidae – jacks	31,700
Crustaceans – crabs	8,600
Holocentridae – squirrelfish	13,900
Kyphosidae – chubs/rudderfish	10,300
Labridae – wrasses ¹	28,500
Lethrinidae – emperors	78,000
Lutjanidae – snappers	21,800
Mollusks – turbo snail; octopus; giant clams	29,000
Mugilidae – mullets	26,200
Mullidae – goatfish	16,400
Scaridae – parrotfish ²	87,100
Serranidae – groupers	28,600
Siganidae – rabbitfish	19,700
All Other CREMUS Combined (other coral reef ecosystem finfish, other	211,300
invertebrates, misc. bottomfish, misc. reef fish, and misc. shallow	
bottomfish)	
Cheilinus undulatus – humphead (Napoleon) wrasse	N.A.
Bolbometopon muricatum – bumphead parrotfish	N.A.
Carcharhinidae – reef sharks	2,900

 Table 46. Best available MSY estimates for the coral reef MUS in Guam

1.2.14 Overfishing Limit, Acceptable Biological Catch, and Annual Catch Limits

1.2.14.1 Brief Description of the ACL Process

The Council developed a Tiered system of control rules to guide the specification of ACLs and Accountability Measures (AMs) (WPRFMC, 2011). The process starts with the use of the best scientific information available (BSIA) in the form of, but not limited to, stock assessments, published paper, reports, or available data. These information are classified to the different Tiers in the control rule ranging from Tier 1 (most information available typically an assessment) to Tier 5 (catch-only information). The control rules are applied to the BSIA. Tiers 1 to 3 would involve conducting a Risk of Overfishing Analysis (denoted by P*) to quantify the scientific uncertainties around the assessment to specify the Acceptable Biological Catch (ABC). This would lower the ABC from the OFL (MSY-based). A Social, Ecological, Economic, and

Management (SEEM) Uncertainty Analysis is performed to quantify the uncertainties from the SEEM factors. The buffer is used to lower the ACL from the ABC. For Tier 4, which is comprised of stocks with MSY estimates but no active fisheries, the control rule is 91% of MSY. For Tier 5 which has catch-only information, the control rule is a third reduction in the median catch depending on the qualitative evaluation on what the stock status is based on expert opinion. ACL specification can choose from a variety of method including the above-mentioned SEEM analysis or a percentage buffer (% reduction from ABC based on expert opinion) or the use of an Annual Catch Target. Specifications are done on an annual basis but the Council normally specifies a multi-year specification.

The Accountability Measure for the coral reef and bottomfish fisheries in Guam is an overage adjustment. The ACL is downward adjusted with the amount of overage from the ACL based on a three-year running average.

1.2.14.2 Current OFL, ABC, ACL, and Recent Catch

The most recent multiyear specification of OFL, ABC, and ACL for the coral reef fishery was completed in the 160th Council meeting on June 25 to 27, 2014. The specification covers fishing year 2015, 2016, 2017, and 2018 for the coral reef MUS complexes. A P* and SEEM analysis was performed for this multiyear specification (NMFS 2015). For the bottomfish, it was a roll over from the previous specification since an assessment update was not available for fishing year 2015. ACLs were not specified by NMFS for the coral reef ecosystem MUS because NMFS has recently acquired new information that require additional environmental analyses to support the Council's ACL recommendations for these management unit species (50 CFR Part 665).

Fishery	MUS	OFL	ABC	ACL	Catch
Bottomfish	Bottomfish multi-species complex	71,000	66,000	66,000	27,022
Crustacean	Deepwater shrimp	N.A.F.	48,488	48,488	N.A.F.
	Spiny lobster	4,600	3,300	3,135	446
	Slipper lobster	N.A.F.	20	20	N.D.
	Kona crab	N.A.F.	1,900	1,900	N.A.F.
Precious coral	Black coral	8,250	700	700	N.A.F.
	Precious coral in CNMI expl. area	N.A.F.	2,205	2,205	N.A.F.

 Table 47. Guam ACL table with three-year average catch (lbs.)

The catch shown in Table 47 takes the average of the recent three years as recommended by the Council at its 160th meeting to avoid large fluctuations in catch due to data quality and outliers. "N.A.F." indicates no active fisheries as of date. "N.D." indicates no data.

The ACL for jacks was reduced from 29,300 lbs. in 2015 to 21,201 lbs. for 2016 due to the overage in 2015 of 8,099 lbs. because of the spike in catch in 2013 of 59,468 lbs. NMFS applied the reduction to the ACL by the amount of the overage (82 FR 5517 2017-01-18) based on the Council's accountability measure for this data poor stock.

1.2.15 Best Scientific Information Available

1.2.15.1 Bottomfish fishery

1.2.15.1.1 Stock assessment benchmark

The benchmark stock assessment for the Territory Bottomfish Management Unit Species complex was developed and finalized in October 2007 (Moffitt et al., 2007). This benchmark utilized a Bayesian statistical framework to estimate parameters of a Schaefer model fit to a time series of annual CPUE statistics. The surplus production model included process error in biomass production dynamics and observation error in the CPUE data. This was an improvement to the previous approach of using index-based proxies for B_{MSY} and F_{MSY} . Best available information for the bottomfish stock assessment is as follows:

Input data: The CPUE and catch data used were from the Guam off-shore creel survey. The catch and CPUE were expanded on an annual level. CPUE was expressed in line-hours. The data was screened for trips that landed more than 50% BMUS species using the handline gear.

Model: state-space model with explicit process and observation error terms (see Meyer and Millar, 1999).

Fishery independent source for biomass: point estimate of MSY from the Our Living Oceans Report (Humphreys and Moffitt, 1999; Moffitt and Humphreys, 2009).

1.2.15.1.2 Stock Assessment Updates

Updates to the 2007 benchmark were done in 2012 (Brodziak et al., 2012) and 2015 (Yau et al., 2015). These included a three-year stock projection table used for selecting the level of risk the fishery will be managed under ACLs. Yau et al. (2015) is considered the best scientific information available for the Territory bottomfish MUS complex after undergoing a WPSAR Tier 3 panel review (Franklin et al., 2015). This was the basis for the P* analysis and SEEM analysis that determined the risk levels to specify ABCs and ACLs.

1.2.15.1.3 Other Information Available

Approximately every five years PIFSC administers a socioeconomic survey to small boat fishermen in Guam. This survey consists of about 60 questions regarding a variety of topics, including fishing experiences, market participation, vessels and gear, demographics and household income, and fishermen perspectives. The survey requests participants to identify which MUS they primarily targeted during the previous 12 months, by percentage of trips. Full reports of these surveys can be found at the PIFSC Socioeconomics webpage (Hospital and Beavers, 2011).

1.2.15.2 Coral Reef Fishery

1.2.15.2.1 Stock Assessment Benchmark

No stock assessment has been generated for the coral reef fisheries. The SDCs using index-based proxies were tested for its applicability in the different MUS in the coral reef fisheries (Hawhee, 2007). This analysis was done on a gear level. It paints a dire situation for the shore-based fishery with 43% of the gear/species combination falling below B_{flag} and 33% below MSST with

most catch and CPUE trends showing a decline over time. The off-shore fisheries were shown to be less dire with 50% of the gear/species combination falling below B_{flag} and 38% below MSST - but the catch and CPUE trends were increasing over time. The inconsistency in the CPUE and catch trends with the SDC results makes this type of assessment to be unreliable.

The first attempt to use a model-based approach in assessing the coral reef MUS complexes was done in 2014 using a biomass-based population dynamics model (Sabater and Kleiber, 2014). This model was based on the original Martell and Froese (2012) model but was augmented with biomass information to relax the assumption behind carrying capacity. It estimates MSY based on a range of rate of population growth (r) and carrying capacity (k) values. The best available information for the coral reef stock assessment is as follows:

Input data: The catch data was derived from the inshore and off-shore creel surveys. Commercial receipt book information was also used in combination with the creel data. A downward adjustment was done to address for potential overlap due to double reporting.

Model: Biomass Augmented Catch MSY approach based on the original catch-MSY model (Martell and Froese, 2012; Sabater and Kleiber, 2014).

Fishery independent source for biomass: biomass density from the Rapid Assessment and Monitoring Program of NMFS-CREP was expanded to the hard bottom habitat from 0-30 m (Williams, 2010).

This model had undergone a CIE review in 2014 (Cook, 2014; Haddon, 2014; Jones, 2014). This was the basis for the P* analysis that determined the risk levels to specify ABCs.

1.2.15.2.2 Stock Assessment Updates

No updates available for the coral reef MUS complex. However, NMFS-PIFSC is finalizing a length-based model for estimating sustainable yield levels and various biological reference points (Nadon et al., 2015). This can be used on a species level. The Council is also working with a contractor to enhance the BAC-MSY model to incorporate catch, biomass, CPUE, effort, and length-based information in an integrated framework (Martell, 2015).

1.2.15.2.3 Other Information Available

Approximately every five years PIFSC administers a socioeconomic survey to small boat fishermen in Guam. This survey consists of about 60 questions regarding a variety of topics, including fishing experiences, market participation, vessels and gear, demographics and household income, and fishermen perspectives. The survey requests participants to identify which MUS they primarily targeted during the previous 12 months, by percentage of trips. Full reports of these surveys can be found at the PIFSC Socioeconomics webpage (Hospital and Beavers, 2011).

PIFSC and the Council conducted a workshop with various stakeholders in CNMI to identify factors and quantify uncertainties associated with the social, economic, ecological, and management of the coral reef fisheries (Sievanen and McCaskey, 2014). This was the basis for the SEEM analysis that determined the risk levels to specify ACLs.

1.2.16 Harvest Capacity and Extent

The MSA defines the term "optimum," with respect to the yield from a fishery, as the amount of fish that:

- Will provide the greatest overall benefit to the Nation, particularly with respect to food production and recreational opportunities, and taking into account the protection of marine ecosystems.
- Is prescribed on the basis of the MSY from the fishery, as reduced by any relevant social, economic, or ecological factor.
- In the case of an overfished fishery, provides for rebuilding to a level consistent with producing the MSY in such a fishery [50 CFR §600.310(f)(1)(i)].

Optimum yield in the coral reef and bottomfish fisheries is prescribed based on the MSY from the stock assessment and the best available scientific information. In the process of specifying ACLs, social, economic, and ecological factors were considered and the uncertainties around those factors defined the management uncertainty buffer between the ABC and ACL. OY for the bottomfish and coral reef fish MUS complexes is defined to be the level of harvest equal to the ACL consistent with the goals and objectives of the Fishery Ecosystem Plans and used by the Council to manage the stock.

The Council recognizes that MSY and OY are long-term values whereas the ACLs are yearly snapshots based on the level of fishing mortality at F_{MSY} . There are situations when the long-term means around MSY are going to be lower than ACLs especially if the stock is known to be productive or relatively pristine or lightly fished. One can have catch levels and catch rates exceeding that of MSY over short-term enough to lower the biomass to a level around the estimated MSY and still not jeopardize the stock. This situation is true for the territory bottomfish multi-species complex.

The harvest extent, in this case, is defined as the level of catch harvested in a fishing year relative to the ACL or OY. The harvest capacity is the level of catch remaining in the annual catch limit that can potentially be used for TALLF. Table 48 summarizes the harvest extent and harvest capacity information for Guam in 2017.

Fishery	MUS	ACL	Catch	Harvest extent (%)	Harvest capacity (%)
Bottomfish	Bottomfish multi-species complex	66,000	27,022	40.9	59.1
Crustacean	Deepwater shrimp	48,488	N.A.F.	0	100
	Spiny lobster	3,135	446	14.2	85.8
	Slipper lobster	20	N.D.		
	Kona crab	1,900	N.A.F.	0	100
Precious	Black coral	700	N.A.F.	0	100
coral	Precious coral in CNMI expl. area	2,205	N.A.F.	0	100

Table 48. Guam 2018 ACL proportion of harvest extent and the harvest capacity

1.2.17 Other Relevant Ocean-Uses and Fishery-Related Information

1.2.17.1 Marine Preserves

Guam has five locally managed Marine Preserves (MPAs): Achang Reef Flat in Merizo, Sasa Bay in Piti, Piti Bombholes in Piti, Tumon Bay in Tumon, and Pati Point in Yigo. A total of 11.8% of Guam's coastline is located within the MPAs.

1.2.17.2 Local Environmental Co-Variates

In early 2010, the U.S. military began exercises in an area south and southeast of Guam designated W-517. W-517 is a special use airspace (SUA) (approximately 14,000 nm²) that overlays deep open ocean approximately 50 miles south-southwest of Guam. Exercises in W-517 generally involve live fire and/or pyrotechnics When W-517 is in use, a notice to mariners (NTM) is issued, and vessels attempting to use the area are advised to be cautious of objects in the water and other small vessels. This discourages access to virtually all banks south of Guam, including Galvez, Santa Rosa, White Tuna, and other popular fishing areas. From 1982-2015, DAWR surveys recorded more than 2930 trolling and bottom fishing trips to these southern banks, an average of more than 83 trips per year. The number of NTM in 2016 was 64, equaling 123 closure days. There were 109 closure days in 2015, certainly impacted the number of available fishing days south of Guam.

1.2.18 Administrative and Regulatory Actions

This summary describes management actions NMFS has taken for CNMI fisheries since the April 2018 Joint FEP Plan Team meeting.

June 14, 2018. Final rule. 5-Year Extension of Moratorium on Harvest of Gold Corals. This final rule extends the region-wide moratorium on the harvest of gold corals in the U.S. Pacific Islands through June 30, 2023. NOAA Fisheries intends this final rule to prevent overfishing and to stimulate research on gold corals.

February 8, 2019. Final rule. Reclassifying Management Unit Species to Ecosystem Component Species. This final rule reclassifies certain management unit species in the Pacific Islands as ecosystem component species. The rule also updates the scientific and local names of certain species. The intent of this final rule is to prioritize conservation and management efforts and to improve efficiency of fishery management in the region. This rule is effective March 11, 2019.

1.2.19 References

- Cook, R., 2014. Report on the Review of the Biomass Augmented Catch-MSY Model for Pacific Island Coral Reef Ecosystem Resources. Report submitted to the Center for Independent Experts.
- Fricke, H. and D. Meischner. 1985. Depth limits of Bermudan scleractinian corals: a submersible survey. *Marine Biology*, 88(2), pp.175-187.

- Green, A.L. 1997. An assessment of the status of the coral reef resources, and their patterns of use, in the U.S. Pacific Islands. Report submitted to the Western Pacific Regional Fishery Management Council. Honolulu, HI 96813. 278 p.
- Haddon, M. 2014. Center for Independent Experts (CIE) Peer Review of the Biomass Augmented Catch-MSY Model for Pacific Island Coral Reef Ecosystem Resources. Report submitted to the Center for Independent Experts.
- Hart, S.R., Coetzee, M., Workman, R.K., Blusztajn, J., Johnson, K.T.M., Sinton, J.M., Steinberger, B., and J.W. Hawkins. 2004. Genesis of the Western Samoa seamount province: age, geochemical fingerprint and tectonics. *Earth and Planetary Science Letters*, 227(1), pp. 37-56.
- Hensley, R.A. and T.S. Sherwood. 1993. An overview of Guam's inshore fisheries. *Marine Fisheries Review*, 55(2), pp. 129-138.
- Humphreys, R. and R. Moffitt. 1999. Unit 17-Western Pacific Bottomfish and Armorhead Fisheries. DOC, NOAA, NMFS Our Living Oceans–Report on the Status of US Living Marine Resources, pp. 189-192.
- Jones, C., 2014. Biomass Augmented Catch---MSY Model for Pacific Island Coral Reef Ecosystem Resources. Report submitted to the Center for Independent Experts.
- Kahng, S.E. and J.E. Maragos. 2006. The deepest, zooxanthellate scleractinian corals in the world?. *Coral Reefs*, 25(2), pp. 254-254.
- Konter, J.G. and M.G. Jackson. 2012. Large volumes of rejuvenated volcanism in Samoa: Evidence supporting a tectonic influence on late-stage volcanism. *Geochemistry, Geophysics, Geosystems, 13*(6).
- Lang, J.C., 1974. Biological Zonation at the Base of a Reef: Observations from the submersible Nekton Gamma have led to surprising revelations about the deep fore-reef and island slope at Discovery Bay, Jamaica. *American Scientist*, *62*(3), pp. 272-281.
- Martell, S. and R. Froese. 2013. A simple method for estimating MSY from catch and resilience. *Fish and Fisheries*, *14*(4), pp. 504-514.
- Meyer, R. and R.B. Millar. 1999. Bayesian stock assessment using a state–space implementation of the delay difference model. *Canadian Journal of Fisheries and Aquatic Sciences*, 56(1), pp. 37-52.
- Myers, R.F., 1997. Assessment of coral reef resources of Guam with emphasis on waters of federal jurisdiction. Report prepared for the Western Pacific Regional Fishery Management Council. Honolulu, HI 96813.
- Moffitt, R.B., Brodziak, J., and T. Flores. 2007. Status of the Bottomfish Resources of American Samoa, Guam, and Commonwealth of the Northern Mariana Islands, 2005. NOAA Pacific Islands Fisheries Science Center Administrative Report H-07-04.

- Nadon, M.O., Ault, J.S., Williams, I.D., Smith, S.G. and G.T. DiNardo. 2015. Length-based assessment of coral reef fish populations in the main and northwestern Hawaiian Islands. *PloS one*, *10*(8), p.e0133960.
- Neall, V.E. and S.A. Trewick. 2008. The age and origin of the Pacific islands: a geological overview. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 363(1508), pp. 3293-3308.
- NMFS. 2015. Specification of Annual Catch Limits and Accountability Measures for Pacific Island Coral Reef Ecosystem Fisheries in Fishing Years 2015 through 2018. Honolulu, HI 96813. RIN 0648-XD558. 228 pp.
- Oram, R., Flores Jr., T., Tibbatts, B. Gutierrez, J. Gesner, J.P., Wusstig, S., Regis., A., Hamm, D., Quach, M., and P Tao. 2011a. Guam Boat-Based Creel Survey Documentation. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center, Administrative Report.
- Oram, R., Flores Jr., T., Tibbatts, B. Gutierrez, J. Gesner, J.P., Wusstig, S., Regis., A., Hamm, D., Quach, M., and P. Tao. 2011b. Guam Shore-Based Creel Survey Documentation. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center, Administrative Report.
- Restrepo, V.R., Thompson, G.G., Mace, P.M., Gabriel, W.L., Low, L.L., MacCall, A.D., Methot, R.D., Powers, J.E., Taylor, B.L., Wade, P.R., and J.F. Witzig. 1998. Technical guidance on the use of precautionary approaches to implementing National Standard 1 of the Magnuson-Stevens Fishery Conservation and Management Act. NOAA Technical Memorandum NMFS-F/SPO-31, pp. 1-54.
- Sabater, M. and P. Kleiber. 2014. Augmented catch-MSY approach to fishery management in coral-associated fisheries. *Interrelationships between Corals and Fisheries*. CRC Press, Boca Raton, FL, pp. 199-218.
- Williams, I. 2010. U.S. Pacific Reef Fish Estimates Based on Visual Survey Data. NOAA Pacific Islands Fisheries Science Center Internal Report IR-10-024.
- WPRFMC. 2011. Omnibus Amendment for the Western Pacific Region to Establish a Process for Specifying Annual Catch Limits and Accountability Measures. Western Pacific Regional Fishery Management Council. Honolulu, HI 96813.
- Yau, A., Nadon, M., Richards, B., Brodziak, J., and E. Fletcher. 2016. Stock assessment updates of the Bottomfish Management Unit species of American Samoa, the Commonwealth of the Northern Mariana Islands, and Guam in 2015 using data through 2013. U.S. Dept. of Commerce, NOAA Technical Memorandum, NMFS-PIFSC-51, 54 p.

This page was intentionally left blank.

2 ECOSYSTEM CONSIDERATIONS

2.1 CORAL REEF ECOSYSTEM PARAMETERS

2.1.1 Regional Reef Fish Biomass

Description: 'Reef fish biomass' is mean biomass of reef fishes per unit area derived from visual survey data between 2010 and 2018.

<u>Rationale</u>: Reef fish biomass has been widely used as an indicator of relative ecosystem status, and has repeatedly been shown to be sensitive to changes in fishing pressure, habitat quality, and oceanographic regime.

Data Category: Fishery independent

Timeframe: Triennial

Jurisdiction: American Samoa, Guam, CNMI, MHI, NWHI, and PRIAs

Spatial Scale: Regional

Data Source: Data used to generate biomass estimates comes from visual surveys conducted by NOAA PIFSC Coral Reef Ecosystem and partners, as part of the Pacific Reef Assessment and Monitoring Program (<u>http://www.pifsc.noaa.gov/cred/pacific_ramp.php</u>). Survey methods are described in detail elsewhere

(http://www.pifsc.noaa.gov/library/pubs/admin/PIFSC_Admin_Rep_15-07.pdf), but in brief involve teams of divers conducting stationary point count cylinder (SPC) surveys within a target domain of <30 meter hard-bottom habitat at each island, stratified by depth zone and, for larger islands, by section of coastline. For consistency among islands, only data from forereef habitats are used. At each SPC, divers record the number, size, and species of all fishes within or passing through paired 15 meter-diameter cylinders over the course of a standard count procedure.

Fish sizes and abundance are converted to biomass using standard length-to-weight conversion parameters, taken largely from FishBase (<u>http://www.fishbase.org</u>), and converted to biomass per unit area by dividing by the area sampled per survey. Site-level data were pooled into island-scale values by first calculating mean and variance within strata, and then calculating weighted island-scale mean and variance using the formulas given in Smith et al. (2011), with strata weighted by their respective sizes.

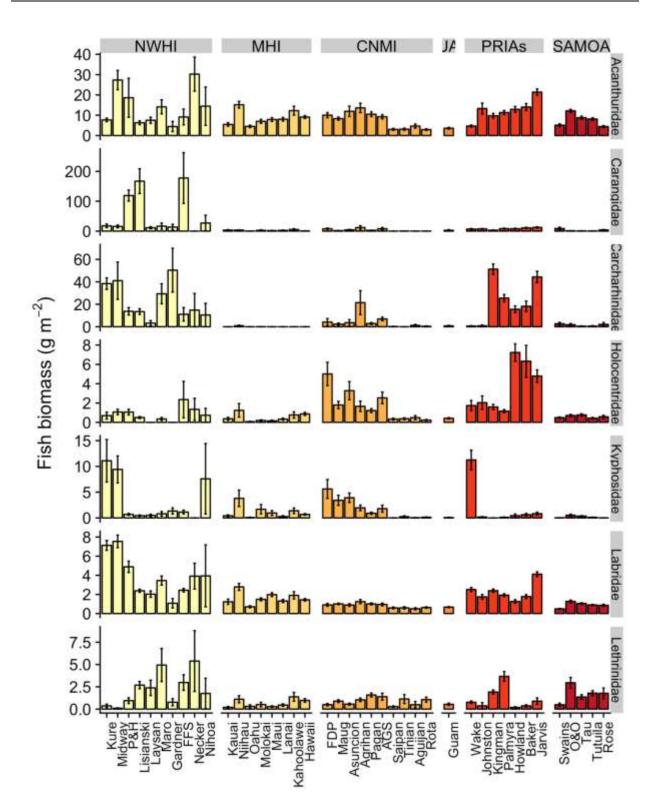
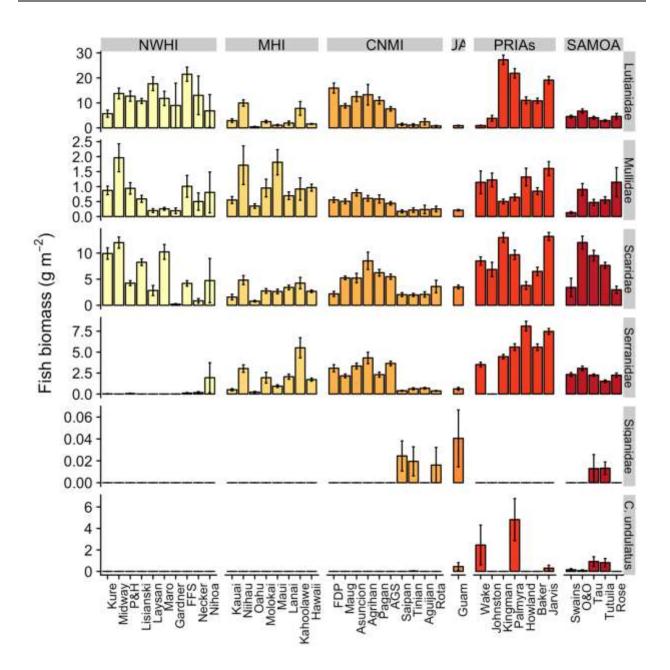



Figure 1. Mean fish biomass (g/m² ± standard error) of CREMUS from 2010-2018 by latitude; figure continued on next page

2.1.2 CNMI Reef Fish Biomass

Description: 'Reef fish biomass' is mean biomass of reef fishes per unit area derived from visual survey data between 2010 and 2018. Anatahan, Guguan, and Sarigan have been grouped.

<u>Rationale</u>: Reef fish biomass has been widely used as an indicator of relative ecosystem status, and has repeatedly been shown to be sensitive to changes in fishing pressure, habitat quality, and oceanographic regime.

Data Category: Fishery independent

Timeframe: Triennial

Jurisdiction: CNMI

Spatial Scale: Island

Data Source: Data used to generate biomass estimates comes from visual surveys conducted by NOAA PIFSC Coral Reef Ecosystem and partners, as part of the Pacific Reef Assessment and Monitoring Program (<u>http://www.pifsc.noaa.gov/cred/pacific_ramp.php</u>). Survey methods and sampling design, and methods to generate reef fish biomass are described above (Section 2.1.1).

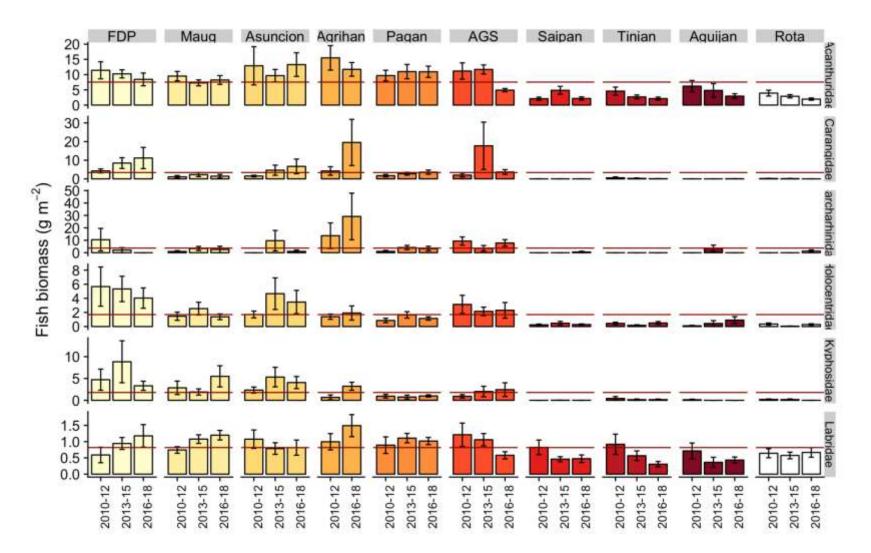
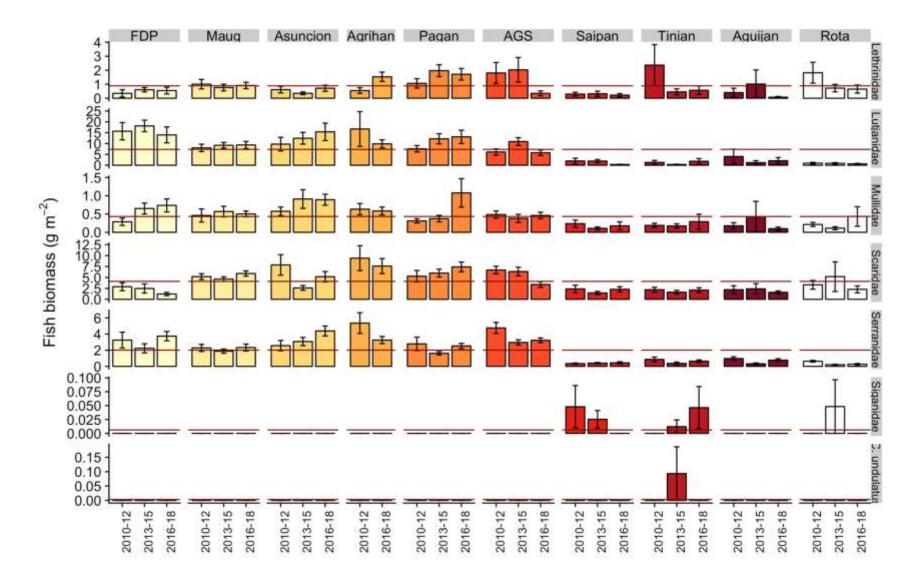



Figure 2. Mean fish biomass (g/m² ± standard error) of CREMUS from 2010-2018 by latitude with mean estimates overlaid in red; figure continued on next page

2.1.3 CNMI Archipelagic Mean Fish Size

Description: 'Mean fish size' is mean size of reef fishes > 10 cm TL derived from visual survey data between 2010 and 2018. Anatahan, Guguan, and Sarigan have been grouped.

<u>Rationale</u>: Mean size is important as it is widely used as an indicator of fishing pressure. A fishery can sometimes preferentially target large individuals, and can also the number of fishes reaching older (and larger) size classes. Large fishes contribute disproportionately to community fecundity and can have important ecological roles; for example, excavating bites by large parrotfishes probably have a longer lasting impact on reef benthos than bites by smaller fishes.

Data Category: Fishery independent

Timeframe: Triennial

Jurisdiction: CNMI

Spatial Scale: Island

Data Source: Data used to generate biomass estimates comes from visual surveys conducted by NOAA PIFSC Coral Reef Ecosystem and partners, as part of the Pacific Reef Assessment and Monitoring Program (<u>http://www.pifsc.noaa.gov/cred/pacific_ramp.php</u>). Survey methods and sampling design, and methods to generate reef fish biomass are described above (Section 2.1.1). Fishes smaller than 10 cm TL are excluded so that the fish assemblage measured more closely reflects fishes that are potentially fished, and so that mean sizes are not overly influenced by variability in space and time of recent recruitment.

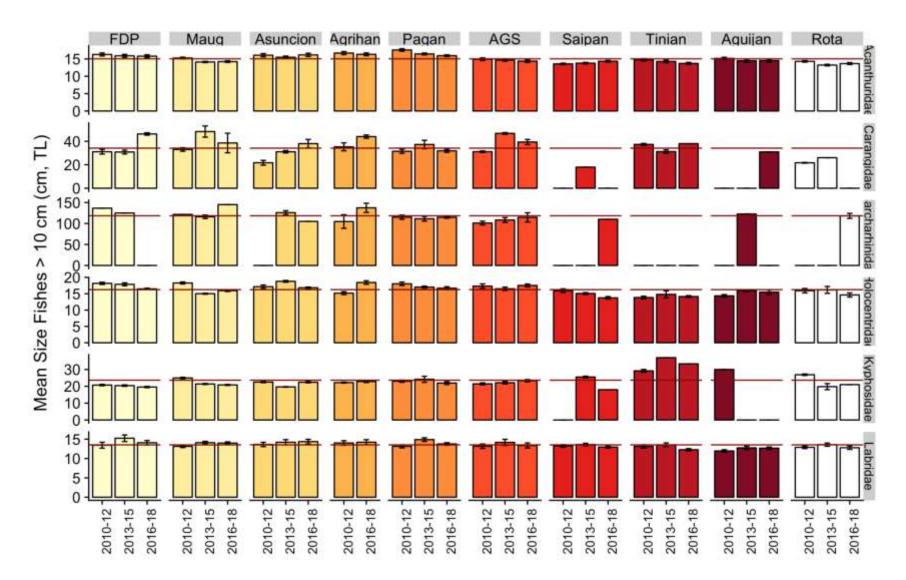
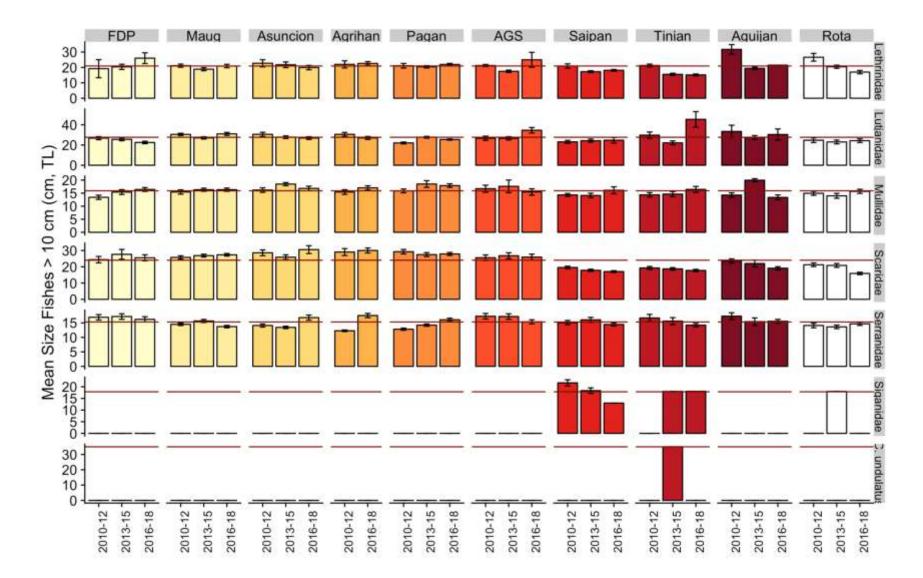



Figure 3. Mean fish size (cm, TL ± standard error) of CNMI CREMUS from 2010-2018 by latitude with mean estimates overlaid in red; figure continued on next page

2.1.4 CNMI Reef Fish Population Estimates

Description: 'Reef fish population estimates' are calculated by multiplying mean biomass per unit area by estimated hardbottom area in a consistent habitat across all islands (specifically, the area of hardbottom forereef habitat in < 30 meters of water).

<u>Rationale</u>: Reef fish population estimate data have utility in understanding the size of populations from which fishery harvests are extracted.

Data Category: Fishery independent

Timeframe: Triennial

Jurisdiction: CNMI

Spatial Scale: Island

Data Source: Data used to generate mean size estimates come from visual surveys conducted by NOAA PIFSC Coral Reef Ecosystem and partners, as part of the Pacific Reef Assessment and Monitoring Program (http://www.pifsc.noaa.gov/cred/pacific_ramp.php). Survey methods and sampling design, and methods to generate reef fish biomass are described above (Section 2.1.1). Those estimates are converted to population estimates by multiplying biomass (g/m²) per island by the estimated area of hardbottom habitat < 30 meters deep at the island, which is the survey domain for the monitoring program that biomass data comes from. Measures of estimated habitat area per island are derived from GIS bathymetry and NOAA Coral Reef Ecosystems Program habitat maps.

Many reef fish taxa are present in other habitats than is surveyed by the program, and some taxa likely have the majority of their populations in deeper water. Additionally, fish counts have the potential to be biased by the nature of fish response to divers. Curious fishes, particularly in locations where divers are not perceived as a threat, will tend to be overestimated by visual survey, while skittish fishes will tend to be undercounted. It is also likely that numbers of jacks and sharks in some locations, such as the NWHI are overestimated by visual survey. Nevertheless, the data shown here are consistently gathered across space and time.

Island	Total area	N	Estimated population biomass (metric tons) in survey domain of < 30 m hardbottom								
Island	of reef (Ha)		Carcharhinids	Holocentridae	Kyphosidae	Labridae					
Farallon de Pajaros	138.5	39	13.9	11.0	5.8	6.9	7.8	1.3			
Maug	313.9	108	26.2	5.1	7.3	5.6	10.7	3.2			
Asuncion	248.6	60	29.7	10.6	8.9	8.2	9.7	2.2			
Agrihan	850.6	39	115.8	101.0	182.3	14.1	16.6	10.6			

Table 49. Reef fish estimates for CNMI CREMUS in 0-30 m hard bottom habitat

Pagan	1,512.9	112	159.4	41.0	43.2	18.4	13.8	15.2
AGS	743.9	84	68.8	58.2	51.5	18.8	13.4	7.1
Saipan	3,539.0	115	107.6	0.1	6.8	11.8	0.4	20.8
Tinian	1,414.2	62	44.3	4.4	-	5.3	3.5	8.4
Aguijan	405.6	40	18.9	0.1	4.8	2.0	0.2	2.0
Rota	1,331.4	80	39.0	1.4	5.7	3.1	1.7	8.4
TOTAL	10,498.5	739	600.9	205.2	257.8	91.6	74.2	77.4
Island	Total Area of reef (Ha)	N	Lethrinidae	Lutjanidae	Mullidae	Scaridae	Serranidae	Siganidae
Farallon de Pajaros	138.5	39	0.7	22.1	0.8	3.0	4.3	-
Maug	313.9	108	2.8	27.7	1.6	16.5	6.8	-
Asuncion	248.6	60	1.4	31.1	2.0	13.0	8.3	-
Agrihan	850.6	39	8.8	113.0	5.2	72.4	36.6	-
Pagan	1,512.9	112	23.9	165.7	8.9	94.3	35.0	-
AGS	743.9	84	10.4	56.6	3.3	40.8	27.1	-
Saipan	3,539.0	115	9.8	49.9	6.2	72.2	13.7	0.9
Tinian	1,414.2	62	16.0	16.4	3.1	28.0	8.8	0.3
Aguijan	405.6	40	2.0	9.9	1.0	8.4	2.8	-
Rota	1,331.4	80	14.2	10.8	3.4	47.8	4.9	0.2
TOTAL	10,498.5	739	89.3	478.1	34.2	381.0	137.9	1.4
Island	Total area	N	Estimated	l population bi	omass (metric tons	s) in survey dom	ain of < 30 m hard	lbottom
Island	of reef (Ha)	IN	Acanthuridae	Carangidae	Carcharhinids	Holocentrida	e Kyphosidae	Labridae
Farallon de Pajaros	138.5	23	15.0	8.8	8.7	7.6	9.4	1.1
Maug	313.9	70	26.4	5.4	6.8	6.3	7.5	2.9
Asuncion	248.6	41	28.0	7.7	12.0	7.9	9.5	2.3
Agrihan	850.6	20	131.9	36.0	116.4	11.9	5.8	8.5

TOTAL	11,806.1	474	102.1	508.8	30.5	405.3	140.4	2.3
Rota	1,331.4	52	16.9	11.9	2.2	56.6	5.6	0.3
Aguijan	405.6	23	2.9	10.7	1.2	9.4	2.6	-
Tinian	1,414.2	38	19.9	11.7	2.6	27.1	8.7	0.1
Saipan	4,846.6	78	14.9	94.4	8.4	93.1	17.8	1.8
AGS	743.9	57	14.3	63.5	3.2	48.6	28.7	-
Pagan	1,512.9	72	22.9	149.6	5.2	85.3	33.3	-
Agrihan	850.6	20	4.7	142.1	5.4	80.1	45.6	-
Asuncion	248.6	41	1.2	27.5	1.8	13.0	7.0	-
Maug	313.9	70	2.8	27.0	1.6	15.4	6.5	-
Farallon de Pajaros	138.5	23	0.7	23.4	0.6	3.7	3.8	-
Island	Total Area of reef (Ha)	N	Lethrinidae	Lutjanidae	Mullidae	Scaridae	Serranidae	Siganidae
TOTAL	11,806.1	474	689.4	164.1	186.0	95.5	63.5	88.8
Rota	1,331.4	52	45.4	2.1	-	2.7	2.5	8.1
Aguijan	405.6	23	22.4	-	7.2	1.1	0.3	2.2
Tinian	1,414.2	38	51.4	5.9	-	4.4	4.2	10.5
Saipan	4,846.6	78	168.5	0.3	-	17.3	0.7	31.2
AGS	743.9	57	85.0	73.6	48.0	19.7	11.0	8.5

Notes: (1) No Bolbometopon muricatum were observed during these surveys in CNMI.

(2) Cheilinus undulatus were recorded at Tinian (0.7 t).

(3) N is the number of site surveyed.

(4) 'AGS' is a combined value for Alamagan, Guguan, and Sarigan.

2.1.5 Guam Reef Fish Biomass

Description: 'Reef fish biomass' is mean biomass of reef fishes per unit area derived from visual survey data (details of survey program below) between 2009 and 2015.

<u>Rationale</u>: Reef fish biomass has been widely used as an indicator of relative ecosystem status, and has repeatedly been shown to be sensitive to changes in fishing pressure, habitat quality, and oceanographic regime.

Data Category: Fishery independent

Timeframe: Triennial

Jurisdiction: Guam

Spatial Scale: Island

Data Source: Data used to generate biomass estimates comes from visual surveys conducted by NOAA PIFSC Coral Reef Ecosystem and partners, as part of the Pacific Reef Assessment and Monitoring Program (<u>http://www.pifsc.noaa.gov/cred/pacific_ramp.php</u>). Survey methods and sampling design, and methods to generate reef fish biomass are described above (Section 2.1.1).

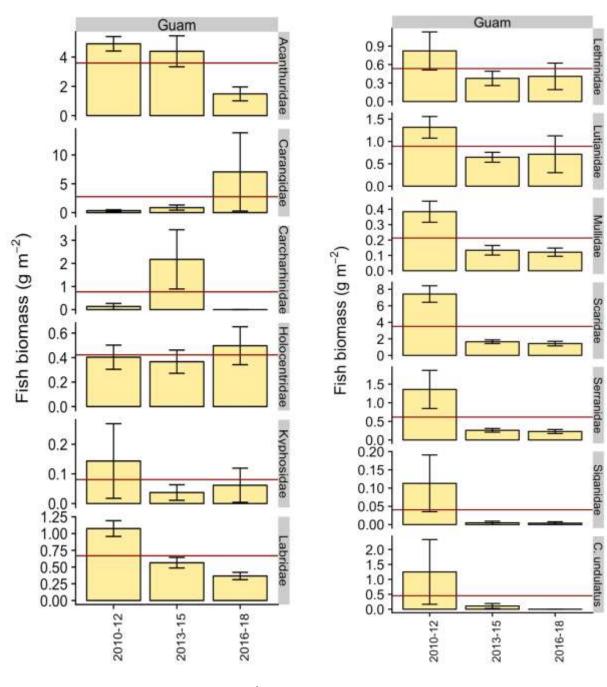
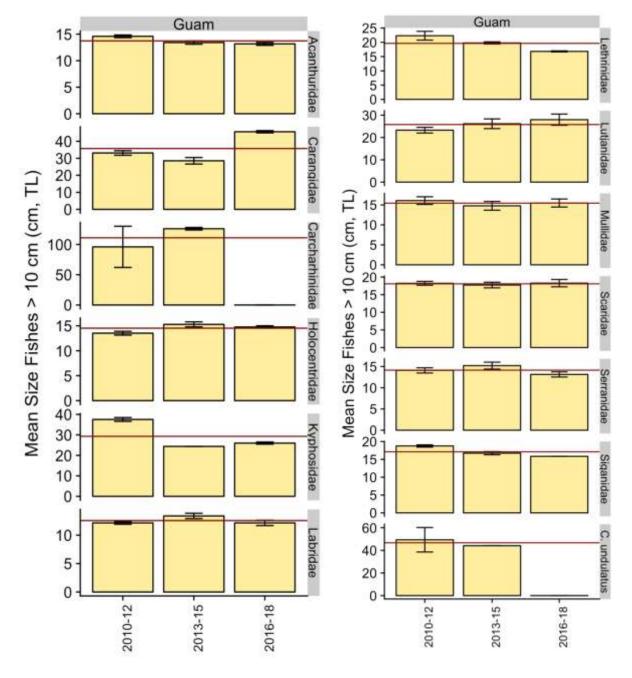


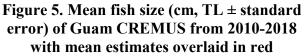
Figure 4. Mean fish biomass (g/m² ± standard error) of Guam CREMUS from the years 2010-2018 with mean estimates overlaid in red

2.1.6 Guam Archipelagic Mean Size

Description: 'Mean fish size' is mean size of reef fishes > 10 cm TL derived from visual survey data between 2010 and 2018.

Rationale: Mean size is important as it is widely used as an indicator of fishing pressure. A fishery can sometimes preferentially target large individuals, and can also the number of fishes reaching older (and larger) size classes. Large fishes contribute disproportionately to community fecundity and can have important ecological roles; for example, excavating bites by large parrotfishes probably have a longer lasting impact on reef benthos than bites by smaller fishes.


Data Category: Fishery independent


Timeframe: Triennial

Jurisdiction: Guam

Spatial Scale: Island

Data Source: Data used to generate biomass estimates comes from visual surveys conducted by NOAA PIFSC Coral Reef Ecosystem and partners, as part of the Pacific Reef Assessment and Monitoring Program (<u>http://www.pifsc.noaa.gov/cred/pacific_ramp.php</u>). Survey methods and sampling design, and methods to generate reef fish biomass are described above (Section 2.1.1). Fishes smaller than 10 cm TL are excluded so that the fish assemblage measured more closely reflects fishes that are potentially fished, and so that mean sizes are not overly influenced by variability in space and time of recent recruitment.

2.1.7 Guam Reef Fish Population Estimates

Description: 'Reef fish population estimates' are calculated by multiplying mean biomass per unit area by estimated hardbottom area in a consistent habitat across all islands (specifically, the area of hardbottom forereef habitat in < 30 meters of water).

<u>Rationale</u>: Reef fish population estimates data have utility in understanding the size of populations from which fishery harvests are extracted.

Data Category: Fishery independent

Timeframe: Triennial

Jurisdiction: Guam

Spatial Scale: Island

Data Source: Data used to generate mean size estimates come from visual surveys conducted by NOAA PIFSC Coral Reef Ecosystem and partners, as part of the Pacific Reef Assessment and Monitoring Program (<u>http://www.pifsc.noaa.gov/cred/pacific_ramp.php</u>). Survey methods and sampling design, and methods to generate reef fish biomass are described above (Section 2.1.1). Those estimates are converted to population estimates by multiplying biomass (g/m²) per island by the estimated area of hardbottom habitat <30 meters deep at the island, which is the survey domain for the monitoring program that biomass data comes from. Measures of estimated habitat area per island are derived from GIS bathymetry and NOAA CREP habitat maps.

Many reef fish taxa are present in other habitats than is surveyed by the program, and some taxa likely have the majority of their populations in deeper water. Additionally, fish counts have the potential to be biased by the nature of fish response to divers. Curious fishes, particularly in locations where divers are not perceived as a threat, will tend to be overestimated by visual survey, while skittish fishes will tend to be undercounted. It is also likely that numbers of jacks and sharks in some locations, such as the NWHI are overestimated by visual survey. Nevertheless, the data shown here are consistently gathered across space and time. Nevertheless, in spite of these issues, the data shown here are consistently gathered across space and time.

	Total area of		Estimated po	pulation bioma	ass (metric tons)	in survey domai	in of < 30 m ha	rdbottom
Island	reef (Ha)	N	Acanthuridae	Carangidae	Carcharhinids	Holocentridae	Kyphosidae	Labridae
Guam	5,177.4	304	186.1	142.6	39.8	21.8	4.2	34.6
			Lethrinidae	Lutjanidae	Mullidae	Scaridae	Serranidae	Siganidae
Guam	5,177.4	304	27.7	46.2	11.0	181.3	31.9	2.10

 Table 50. Reef fish population estimates for Guam CREMUS

Notes:

(1) N is the number of sites surveyed.

(2) No Bolbometopon muricatum were observed during these surveys in Guam.

(3) Cheilinus undulatus were recorded in Guam (43.2 t).

2.2 LIFE HISTORY AND LENGTH-DERIVED PARAMETERS

The annual SAFE report will serve as the repository of available life history information for the Western Pacific region. Life history data particularly age, growth, reproduction and mortality information inform the stock assessment on fish productivity and population dynamics. Some assessments particularly for data poor stocks like coral reefs utilize information from other areas that introduces errors and uncertainties in the population estimates. An archipelago specific life history parameter ensures accuracy in the input parameters used in the assessment.

The NMFS Biosampling Program allows for significant collection of life history samples like otoliths and gonads from priority species in the bottomfish and coral reef fisheries. A significant number of samples are also collected during research cruises. These life history samples, once processed and data extracted, will contribute to the body of scientific information for the two data-poor fisheries in the region. The life history information available from the region will be monitored by the Fishery Ecosystem Plan Team and will be tracked through this section of the report.

This section will be divided into two fisheries: 1) coral reef; and 2) bottomfish. Within each fishery, the available life history information will be described under the age, growth, and reproductive maturity section. The section labelled fish length-derived parameters summarizes available information derived from sampling the fish catch or the market. Monitoring length information provides insight on the state of the fish stock where the change in length can be used as an indicator of population level mortality. Length-weight conversion coefficients provide area-specific values to convert length from fishery dependent and fishery independent data collection to weight or biomass.

2.2.1 CNMI Coral Reef Ecosystem – Reef Fish Life History

2.2.1.1 Age & Growth and Reproductive Maturity

Description: Age determination is based on counts of yearly growth marks (annuli) and/or daily growth increments (DGIs) internally visible within transversely-cut, thin sections of sagittal otoliths. Validated age determination is based on an environmental signal (bomb radiocarbon ¹⁴C) produced during previous atmospheric thermonuclear testing in the Pacific and incorporated into the core regions of sagittal otolith and other aragonite-based calcified structures such as hermatypic corals. This technique relies on developing a regionally-based aged coral core reference series for which the rise, peak, and decline of ¹⁴C values is available over the known age series of the coral core. Estimates of fish age are determined by projecting the ¹⁴C otolith core values back in time from its capture date to where it intersects with the known age ¹⁴C coral reference series. The relation between age and fish length is evaluated by fitting this data to a von Bertalanffy growth function based on statistical analyses. The resulting von Bertalanffy growth function predicts the pattern of growth over time for that particular species. This function typically uses three coefficients (L_∞, *k*, and *t*₀) which together characterize the shape of the length-at-age growth relationship.

Length-at-reproductive maturity is based on the histological analyses of small tissue samples of gonad material that are typically collected along with otoliths when a fish is processed for life history studies. The gonad tissue sample is preserved then subsequently cut into five micron sections, stained, and sealed onto a glass slide for subsequent examination. Based on standard

cell structure features and developmental stages within ovaries and testes, the gender, developmental stage, and maturity status (immature or mature) is determined via microscopic evaluation. The percent of mature samples for a given length interval are assembled for each sex and these data are fitted to a three- or four-parameter logistic function to determine the best fit of these data based on statistical analyses. The mid-point of this fitted function provides an estimate of the length at which 50% of fish have achieved reproductive maturity (L_{50}). For species that undergo sex reversal (primarily female to male in the tropical Pacific region) - such as groupers and deeper-water emperors among the bottomfishes, and for parrotfish, shallow-water emperors, and wrasses among the coral reef fishes - standard histological criteria are used to determine gender and reproductive developmental stages that indicate the transitioning or completed transition from one sex to another. These data are similarly analyzed using a three or fourparameter logistic function to determine the best fit of the data based on statistical analyses. The mid-point of this fitted function provides an estimate of the length at which 50% of fish of a particular species have or are undergoing sex reversal ($L\Delta_{50}$).

Age at 50% maturity (A_{50}) and 50% sex reversal ($A\Delta_{50}$) is typically derived by referencing the von Bertalanffy growth function for that species and using the corresponding L_{50} and $L\Delta_{50}$ values to obtain the corresponding age value from this growth function. In studies where both age & growth and reproductive maturity are concurrently determined, estimates of A_{50} and $A\Delta_{50}$ are derived directly by fitting the percent of mature samples for each age (one-year) interval to a three- or four-parameter logistic function using statistical analyses. The mid-point of this fitted logistic function provides a direct estimate of the age at which 50% of fish of a particular species have achieved reproductive maturity (A_{50}) and sex reversal ($A\Delta_{50}$).

Parameter definitions:

 T_{max} (maximum age) – The maximum observed age revealed from an otolith-based age determination study. T_{max} values can be derived from ages determined by annuli counts of sagittal otolith sections and/or bomb radiocarbon (¹⁴C) analysis of otolith core material. Unites are years.

 L_{∞} (asymptotic length) – One of three coefficients of the von Bertalanffy growth function (VBGF) that measures the mean maximum length at which the growth curve plateaus and no longer increases in length with increasing age. This coefficient reflects the mean maximum length and not the observed maximum length. Units are centimeters.

k (growth coefficient) – One of three coefficients of the VBGF that measures the shape and steepness by which the initial portion of the growth function approaches its mean maximum length (L_{∞}) .

 t_0 (hypothetical age at length zero) – One of three coefficients of the VBGF whose measure is highly influenced by the other two VBGF coefficients (k and L_{∞}) and typically assumes a negative value when specimens representing early growth phases (0+ to 1+ ages) are not available for age determination. Units are years.

M (natural mortality) – This is a measure of mortality rate for a fish stock not under the influence of fishing pressure and is considered to be directly related to stock productivity (i.e., high M indicates high productivity and low M indicates low stock productivity). M can be

derived through use of various equations that link M to T_{max} and two VBGF coefficients (k and L_{∞}) or by calculating the value of the slope from a regression fit to a declining catch curve (regression of the natural logarithm of abundance versus age class) derived from fishing an unfished or lightly fished population.

 A_{50} (age at 50% maturity) – Age at which 50% of the sampled stock under study has attained reproductive maturity. This parameter is best determined based on studies that concurrently determine both age (otolith-based age data) and reproductive maturity status (logistic function fitted to percent mature by age class with maturity determined via microscopic analyses of gonad histology preparations). A more approximate means of estimating A_{50} is to use an existing L_{50} estimate to find the corresponding age (A_{50}) from an existing VBGF curve. Units are years.

 $A\Delta_{50}$ (age of sex switching) – Age at which 50% of the immature and adult females of the sampled stock under study is undergoing or has attained sex reversal. This parameter is best determined based on studies that concurrently determines both age (otolith-based age data) and reproductive sex reversal status (logistic function fitted to percent sex reversal by age class with sex reversal determined via microscopic analyses of gonad histology preparations). A more approximate means of estimating $A\Delta_{50}$ is to use an existing $L\Delta_{50}$ estimate to find the corresponding age ($A\Delta_{50}$) from the VBGF curve. Units are years.

 L_{50} (length at which 50% of a fish species are capable of spawning) – Length (usually in terms of fork length) at which 50% of the females of a sampled stock under study has attained reproductive maturity; this is the length associated with A_{50} estimates. This parameter is derived using a logistic function to fit the percent mature data by length class with maturity status best determined via microscopic analyses of gonad histology preparations). L_{50} information is typically more available than A_{50} since L_{50} estimates do not require knowledge of age & growth. Units are centimeters.

 $L\Delta_{50}$ (length of sex switching) – Length (usually in terms of fork length) at which 50% of the immature and adult females of the sampled stock under study is undergoing or has attained sex reversal; this is the length associated with $A\Delta_{50}$ estimates. This parameter is derived using a logistic function to fit the percent sex reversal data by length class with sex reversal status best determined via microscopic analyses of gonad histology preparations). $L\Delta_{50}$ information is typically more available than $A\Delta_{50}$ since $L\Delta_{50}$ estimates do not require knowledge of age & growth. Units are centimeters.

Rationale: These nine life-history parameters provide basic biological information at the species level to evaluate the productivity of a stock - an indication of the capacity of a stock to recover once it has been depleted. Currently, the assessment of coral reef fish resources in the CNMI is data-limited. Knowledge of these life-history parameters support current efforts to characterize the resilience of these resources, provide important biological inputs for future stock assessment efforts, and enhance our understanding of the species' likely role and status as a component of the overall ecosystem. Furthermore, knowledge of life histories across species at the taxonomic level of families or among different species that are ecologically or functionally similar can provide important information on the diversity of life histories and the extent to which species can be grouped (based on similar life histories) for future multi-species assessments.

Category: Biological

Timeframe: N/A

Jurisdiction: CNMI

Spatial Scale: Archipelagic

Data Source: Sources of data are directly derived from research cruises sampling and market samples collected by the CNMI contracted bio-sampling team which samples the catch of fishermen and local fish vendors. Laboratory analyses and data generated from these analyses reside with the PIFSC Life History Program. Refer to the "Reference" column in Table 51 for specific details on data sources by species.

C	A	DC								
Species	T _{max}	L_{∞}	k	t_0	М	A50	$A\Delta_{50}$	L_{50}	$L\Delta_{50}$	Reference
Calotomus carolinus										
Chlorurus spilurus										
Lethrinus atkinsoni										
Lethrinus obsoletus	13 ^d	25.1 ^d	0.6 ^d	$3.0 (L_0)^d$	0.32 ^d	3.8 (f), 2.8 (m) ^d	a	22.9 (f), 19.9 (m) ^d		^d Taylor et. al. (2017)
Mulloidichthys flavolineatus	X ^a	X ^a	X ^a	X ^a	X ^a	X ^a		X ^a		Reed et al., in prep.
Naso unicornis							NA	238 ^b	NA	
Parupeneus barberinus	X ^a	X ^a	X ^a	X ^a	X ^a	X ^a	NA	X ^a		Reed et al., in prep.
Sargocentron tiere							NA		NA	
Siganus argenteus	7 ^d	274 ^d	0.9 ^d	-0.3 ^d	0.56 ^d	1.3 ^d	NA	218 ^d	NA	^d Taylor et. al. (2016)

 Table 51. Available age, growth, and reproductive maturity information for coral reef species targeted for otolith and gonad sampling in CNMI

^a signifies estimate pending further evaluation in an initiated and ongoing study.

^b signifies a preliminary estimate taken from ongoing analyses.

^c signifies an estimate documented in an unpublished report or draft manuscript.

^d signifies an estimate documented in a finalized report or published journal article (including in press).

Parameter estimates are for females unless otherwise noted (F=females, M=males). Parameters T_{max} , t_0 , A_{50} , and $A\Delta_{50}$ are in units of years; L_{∞} , L_{50} , and $L\Delta_{50}$ are in units of mm fork length (FL); k in units of year⁻¹; X=parameter estimate too preliminary or Y=published age and growth parameter estimates based on DGI numerical integration technique and likely to be inaccurate;

NA=not applicable. Superscript letters indicate status of parameter estimate (see footnotes below table). Published or in press publications (^d) are denoted in "Reference" column.

2.2.1.2 Fish Length Derived Parameters

Description: The NMFS Commercial Fishery Biosampling Program started in 2009. This program has two components: first is the Field/Market Sampling Program, and the second is the Life History Program, details of which are described in a separate section of this report. The goals of the Field/Market Sampling Program are:

- Broad scale look at commercial landings (by fisher/trip, gear, and area fished);
- Length and weight frequencies of whole commercial landings per fisher-trip (with an effort to also sample landings not sold commercially);
- Accurate species identification;
- Develop accurate local length-weight curves.

In CNMI, the Biosampling is focused on the commercial coral reef spear fishery with occasional sampling of the bottomfish fishery occurring locally and less frequently at the northern islands. Sampling is conducted in partnership with the fish vendors. The Market Sampling information includes (but not limited to): 1) fish length; 2) fish weight; 3) species identification; and 4) basic effort information. Specific for CNMI, the program collects Daily Vendor Logs for reef fish that includes basic catch and effort information.

Category: Biological

Timeframe: N/A

Jurisdiction: CNMI

Spatial Scale: Island

Data Source: NMFS Biosampling Program

Parameter definitions:

 L_{max} – maximum fish length is the longest fish per species recorded in the Biosampling Program from the commercial spear fishery. This value is derived from measuring the fork length of individual samples for species occurring in the spear fishery.

 L_{bar} – *mean length* is the average value of all lengths recorded from the commercial spear fishery. This can be influenced by gear selectivity since the commercial spear fishery has a typical size target based on customer demand. This can also be influenced by size regulations.

n - sample size is the total number of samples accumulated for each species recorded in the commercial spear fishery.

 N_{L-W} – sample size for L-W regression is the number of samples used to generate the a & b coefficients.

a & b - length-weight coefficients are the coefficients derived from the regression line fitted to all length- and weight-measured per species in the commercial spear fishery. These values are used to convert length information to weight. Values are influenced by the life history characteristics of the species, geographic location, population status, and nature of the fisheries from which the species are harvested.

Rationale: Length-derived information is being used as an indicator of population status particularly for data poor stocks like coral reef fish. Average length (L_{bar}) was used as a principal stock assessment indicator variable for exploited reef fish population (Nadon et al., 2015). Average length was also shown to be correlated with population size (Kerr and Dickle, 2001). Maximum length (L_{max}), typically coupled with maximum age, is typically used as a proxy for fish longevity which has implications on the productivity and susceptibility of a species to fishing pressure. The length-weight coefficients (a & b values) are used to convert length to weight for fishery-dependent and fishery-independent data collection where length are typically recorded but weight is the factor being used for management. This section of the report presents the best available information for the length-derived variables for the CNMI coral reef and bottomfish fisheries.

Smaaing		Leng	th-deriv	ed para	meters		Defenence
Species	L _{max}	L _{bar}	N	L-W	а	b	Reference
Naso lituratus	30.1	20.26	17,478	3,813	0.0167	3.1022	
Acanthurus lineatus	23.5	18.33	15,772	4,901	0.0383	2.8718	
Siganus argenteus	34.1	20.82	11,867	3,662	0.0133	3.1007	
Mulloidichthys flavolineatus	31.4	18.08	9,596	2,357	0.0137	3.0547	
Naso unicornis	53.6	29.62	8,323	4,349	0.0266	2.9115	
Siganus spinus	25.6	16.64	7,685	1,078	0.0118	3.1459	
Parupeneus barberinus	37.3	21.73	7,597	2,706	0.0175	3.0119	
Selar crumenophthalmus	26.5	19.08	4922	2654	0.0051	3.3958	
Scarus ghobban	38.1	24.07	4,964	1,502	0.0124	3.1271	
Lethrinus atkinsoni	35.1	21.06	4,306	2,095	0.0163	3.0971	
Lethrinus obsoletus	29.0	21.10	3,673	1,472	0.0171	3.0313	
Mulloidichthys vanicolensis	28.0	18.94	3,233	701	0.0103	3.1948	
Scarus rubroviolaceus	52.6	34.49	3,141	1,791	0.0087	3.2447	
Chlorurus sordidus	30.8	22.33	3,346	956	0.0173	3.0795	
Siganus punctatus	34.8	20.82	2,798	833	0.0129	3.1911	
Sargocentron spiniferum	34.6	20.31	2,589	684	0.0245	2.9780	
Myripristis murdjan	22.3	16.84	2,488	823	0.1699	2.3426	
Scarus psittacus	28.9	21.24	2,466	771	0.0212	2.9928	
Acanthurus nigricauda	26.3	20.07	2,354	799	0.0217	3.0583	
Cheilinus trilobatus	35.2	24.06	2,223	1,196	0.0470	2.7156	
Hipposcarus longiceps	52.0	29.10	2,194	615	0.0149	3.0624	
Panulirus penicillatus	17.0	9.05	2,043	1,119	1.4849	2.6925	
Leptoscarus vaigiensis	35.2	26.31	1,982	807	0.0234	2.8648	
Calotomus carolinus	31.0	24.21	1,734	662	0.0156	3.1012	

Table 52. Available length-derived information for various coral reef species in CNMI

Species		Leng		Doforonao			
Species	L _{max}	L _{bar}	N	L-W	а	b	Reference
Myripristis violacea	20.6	15.54	1,796	514	0.1361	2.4356	

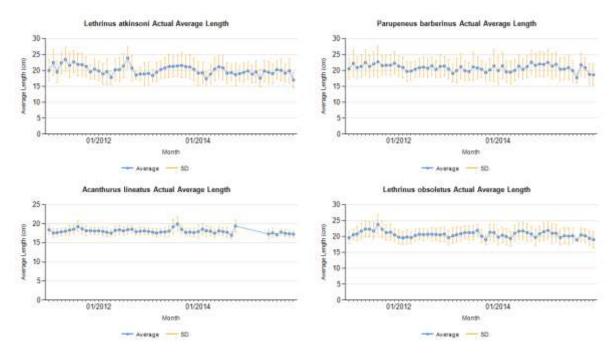
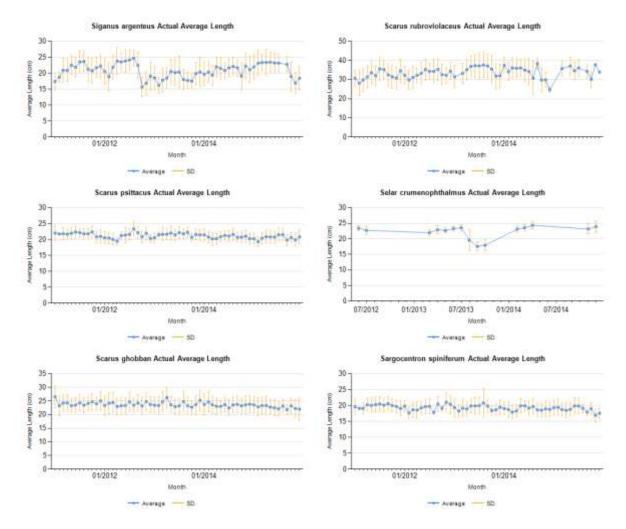




Figure 6. Average length over time of representative CNMI CREMUS from the Biosampling Program; figure continues for various species onto the next two pages

2.2.2 CNMI Bottomfish Ecosystem – Bottomfish Life History

2.2.2.1 Age & Growth and Reproductive Maturity

Description: Age determination is based on counts of yearly growth marks (annuli) and/or daily growth increments (DGIs) internally visible within transversely-cut, thin sections of sagittal otoliths. Validated age determination is based on an environmental signal (bomb radiocarbon ¹⁴C) produced during previous atmospheric thermonuclear testing in the Pacific and incorporated into the core regions of sagittal otolith and other aragonite-based calcified structures such as hermatypic corals. This technique relies on developing a regionally-based aged coral core reference series for which the rise, peak, and decline of ¹⁴C values is available over the known age series of the coral core. Estimates of fish age are determined by projecting the ¹⁴C otolith core values back in time from its capture date to where it intersects with the known age ¹⁴C coral reference series. The relation between age and fish length is evaluated by fitting this data to a von Bertalanffy growth function based on statistical analyses. The resulting von Bertalanffy growth function predicts the pattern of growth over time for that particular species. This function typically uses three coefficients (L_∞, *k*, and *t*₀) which together characterize the shape of the length-at-age growth relationship.

Length-at-reproductive maturity is based on the histological analyses of small tissue samples of gonad material that are typically collected along with otoliths when a fish is processed for life history studies. The gonad tissue sample is preserved then subsequently cut into five micron sections, stained, and sealed onto a glass slide for subsequent examination. Based on standard cell structure features and developmental stages within ovaries and testes, the gender, developmental stage, and maturity status (immature or mature) is determined via microscopic evaluation. The percent of mature samples for a given length interval are assembled for each sex and these data are fitted to a three- or four-parameter logistic function to determine the best fit of these data based on statistical analyses. The mid-point of this fitted function provides an estimate of the length at which 50% of fish have achieved reproductive maturity (L_{50}) . For species that undergo sex reversal (primarily female to male in the tropical Pacific region), such as groupers and deeper-water emperors among the bottomfishes, and for parrotfish, shallow-water emperors, and wrasses among the coral reef fishes, standard histological criteria are used to determine gender and reproductive developmental stages that indicate the transitioning or completed transition from one sex to another. These data are similarly analyzed using a three or fourparameter logistic function to determine the best fit of the data based on statistical analyses. The mid-point of this fitted function provides an estimate of the length at which 50% of fish of a particular species have or are undergoing sex reversal $(L\Delta_{50})$.

Age at 50% maturity (A_{50}) and 50% sex reversal ($A\Delta_{50}$) is typically derived by referencing the von Bertalanffy growth function for that species and using the corresponding L_{50} and $L\Delta_{50}$ values to obtain the corresponding age value from this growth function. In studies where both age & growth and reproductive maturity are concurrently determined, estimates of A_{50} and $A\Delta_{50}$ are derived directly by fitting the percent of mature samples for each age (one-year) interval to a three- or four-parameter logistic function using statistical analyses. The mid-point of this fitted logistic function provides a direct estimate of the age at which 50% of fish of a particular species have achieved reproductive maturity (A_{50}) and sex reversal ($A\Delta_{50}$).

Category: Biological

Timeframe: N/A

Jurisdiction: CNMI

Spatial Scale: Island

Data Source: Sources of data are directly derived from research cruises sampling and market samples collected by the CNMI contracted bio-sampling team which samples the catch of fishermen and local fish vendors. Laboratory analyses and data generated from these analyses reside with the PIFSC Life History Program. Refer to the "Reference" column in Table 53 for specific details on data sources by species.

Parameter definitions:

 T_{max} (maximum age) – The maximum observed age revealed from an otolith-based age determination study. T_{max} values can be derived from ages determined by annuli counts of sagittal otolith sections and/or bomb radiocarbon (¹⁴C) analysis of otolith core material. Units are years.

 L_{∞} (asymptotic length) – One of three coefficients of the von Bertalanffy growth function (VBGF) that measures the mean maximum length at which the growth curve plateaus and no longer increases in length with increasing age. This coefficient reflects the mean maximum length and not the observed maximum length. Units are centimeters

k (growth coefficient) – One of three coefficients of the VBGF that measures the shape and steepness by which the initial portion of the growth function approaches its mean maximum length (L_{∞}) .

 t_0 (hypothetical age at length zero) – One of three coefficients of the VBGF whose measure is highly influenced by the other two VBGF coefficients (k and L_{∞}) and typically assumes a negative value when specimens representing early growth phases (0+ to 1+ ages) are not available for age determination. Units are years.

M (natural mortality) – this is a measure of mortality rate for a fish stock not under the influence of fishing pressure and is considered to be directly related to stock productivity (i.e., high M indicates high productivity and low M indicates low stock productivity). M can be derived through use of various equations that link M to T_{max} and two VBGF coefficients (k and L_{∞}) or by calculating the value of the slope from a regression fit to a declining catch curve (regression of the natural logarithm of abundance versus age class) derived from fishing an unfished or lightly fished population.

 A_{50} (age at 50% maturity) – Age at which 50% of the sampled stock under study has attained reproductive maturity. This parameter is best determined based on studies that concurrently determine both age (otolith-based age data) and reproductive maturity status (logistic function fitted to percent mature by age class with maturity determined via microscopic analyses of gonad histology preparations). A more approximate means of estimating A_{50} is to use an existing L_{50} estimate to find the corresponding age (A_{50}) from an existing VBGF curve. Units are years.

 $A\Delta_{50}$ (age of sex switching) – Age at which 50% of the immature and adult females of the sampled stock under study is undergoing or has attained sex reversal. This parameter is best determined based on studies that concurrently determines both age (otolith-based age data) and reproductive sex reversal status (logistic function fitted to percent sex reversal by age class with sex reversal determined via microscopic analyses of gonad histology preparations). A more approximate means of estimating $A\Delta_{50}$ is to use an existing $L\Delta_{50}$ estimate to find the corresponding age ($A\Delta_{50}$) from the VBGF curve. Units are years.

 L_{50} (length at which 50% of a fish species are capable of spawning) – Length (usually in terms of fork length) at which 50% of the females of a sampled stock under study has attained reproductive maturity; this is the length associated with A_{50} estimates. This parameter is derived using a logistic function to fit the percent mature data by length class with maturity status best determined via microscopic analyses of gonad histology preparations). L_{50} information is typically more available than A_{50} since L_{50} estimates do not require knowledge of age & growth. Units are in centimeters.

 $L\Delta_{50}$ (length of sex switching) – Length (usually in terms of fork length) at which 50% of the immature and adult females of the sampled stock under study is undergoing or has attained sex

reversal; this is the length associated with $A\Delta_{50}$ estimates. This parameter is derived using a logistic function to fit the percent sex reversal data by length class with sex reversal status best determined via microscopic analyses of gonad histology preparations). $L\Delta_{50}$ information is typically more available than $A\Delta_{50}$ since $L\Delta_{50}$ estimates do not require knowledge of age & growth. Units are in centimeters.

Rationale: These nine life-history parameters provide basic biological information at the species level to evaluate the productivity of a stock - an indication of the capacity of a stock to recover once it has been depleted. Currently, the assessment of coral reef fish resources in CNMI is data-limited. Knowledge of these life-history parameters support current efforts to characterize the resilience of these resources, provide important biological inputs for future stock assessment efforts, and enhance our understanding of the species' likely role and status as a component of the overall ecosystem. Furthermore, knowledge of life histories across species at the taxonomic level of families or among different species that are ecologically or functionally similar can provide important information on the diversity of life histories and the extent to which species can be grouped (based on similar life histories) for future multi-species assessments.

с ·	Age, gr	owth,	and r	epro	ductiv	ve ma	turity p	oaran	neters	Df
Species	T _{max}	L_{∞}	k	t_{θ}	M	A 50	$A\Delta_{50}$	L_{50}	$L\Delta_{5\theta}$	Reference
Aphareus rutilans	Y	Y	Y	Y			NA		NA	Y-Ralston & Williams (1988)
Aprion virescens							NA		NA	
Etelis carbunculus							NA		NA	
Etelis coruscans	Y	Y	Y	Y			NA		NA	Y-Ralston & Williams (1988)
Monotaxis grandoculis										
Pristipomoides auricilla	X ^c	X ^c	X ^c	X ^c	X ^c		NA		NA	O'Malley et al. (in review)
Pristipomoides filamentosus							NA		NA	
Pristipomoides flavipinnis							NA		NA	
Pristipomoides sieboldii	Y	Y	Y	Y			NA		NA	Y-Ralston & Williams (1988)
Pristpomoides zonatus	X ^a	X ^a	X ^a	X ^a	X ^a		NA		NA	LHP (in prep)
Variola louti										

Table 53. Available age, growth, and reproductive maturity information for bottomfishspecies targeted for otoliths and gonads sampling in CNMI

^a signifies estimate pending further evaluation in an initiated and ongoing study.

^b signifies a preliminary estimate taken from ongoing analyses.

^c signifies an estimate documented in an unpublished report or draft manuscript.

^d signifies an estimate documented in a finalized report or published journal article (including in press).

Parameter estimates are for females unless otherwise noted (F=females, M=males). Parameters T_{max} , t_0 , A_{50} , and $A\Delta_{50}$ are in units of years; L_{∞} , L_{50} , and $L\Delta_{50}$ are in units of mm fork length (FL); k in units of year⁻¹; X=parameter estimate too preliminary or Y=published age and growth

parameter estimates based on DGI numerical integration technique and likely to be inaccurate; NA=not applicable. Superscript letters indicate status of parameter estimate (see footnotes below table). Published or in press publications (^d) are denoted in "Reference" column.

2.2.2.2 Fish Length Derived Parameters

Description: The NMFS Commercial Fishery Biosampling Program started in 2009. This program has two components: first is the Field/Market Sampling Program and the second is the Life History Program, details of which are described in a separate section of this report. The goals of the Field/Market Sampling Program are:

- Broad scale look at commercial landings (by fisher/trip, gear, and area fished);
- Length and weight frequencies of whole commercial landings per fisher-trip (with an effort to also sample landings not sold commercially);
- Accurate species identification;
- Develop accurate local length-weight curves.

In CNMI, the Biosampling is focused on the commercial coral reef spear fishery with occasional sampling of the bottomfish fishery occurring locally and less frequently at the northern islands. Sampling is conducted in partnership with the fish vendors. The Market Sampling information includes (but not limited to): 1) fish length; 2) fish weight; 3) species identification; and 4) basic effort information. Specific for CNMI, the program collects Daily Vendor Logs for bottomfish that includes basic catch and effort information.

Category: Biological

Timeframe: N/A

Jurisdiction: CNMI

Spatial Scale: Island

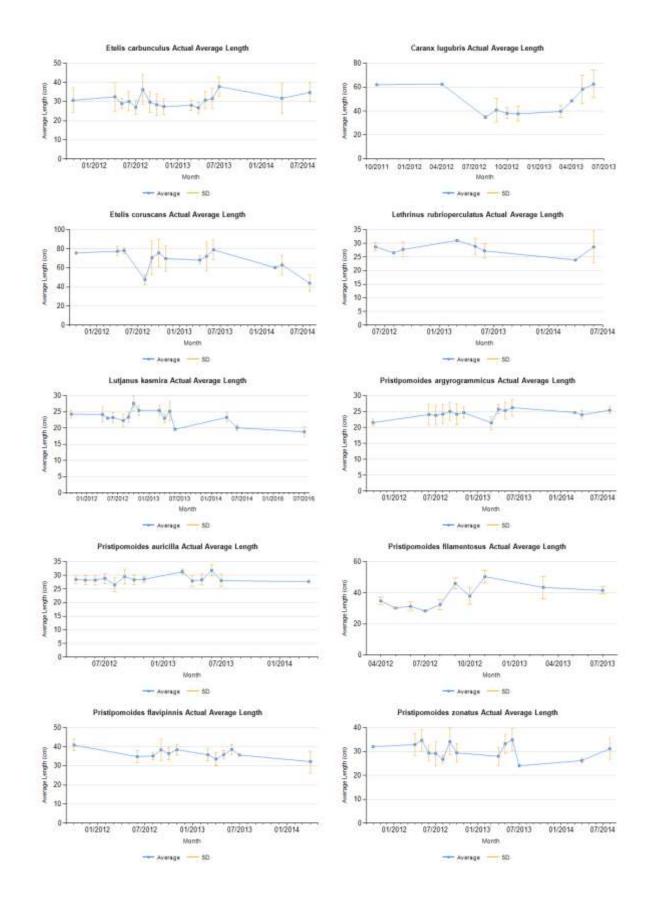
Data Source: NMFS Biosampling Program

Parameter definitions:

 L_{max} – maximum fish length is the longest fish per species recorded in the Biosampling Program from the commercial bottomfish fishery. This value is derived from measuring the fork length of individual samples for species occurring in the spear fishery.

 L_{bar} – *mean length* is the average value of all lengths recorded from the commercial spear fishery. This can be influenced by gear selectivity since the commercial bottomfish fishery has a typical size target based on customer demand. This can also be influenced by size regulations.

 $n - sample \ size$ is the total number of samples accumulated for each species recorded in the commercial bottomfish fishery.


 N_{L-W} – sample size for L-W regression is the number of samples used to generate the a & b coefficients.

a & b - length-weight coefficients are the coefficients derived from the regression line fitted to all length and weight measured per species in the commercial bottomfish fishery. These values are used to convert length information to weight. Values are influenced by the life history characteristics of the species, geographic location, population status, and nature of the fisheries from which the species are harvested from.

Rationale: Length-derived information is being used as an indicator of population status particularly for data poor stocks like coral reef fish. Average length (L_{bar}) was used as a principal stock assessment indicator variable for exploited reef fish population (Nadon et al., 2015). Average length was also shown to be correlated with population size (Kerr and Dickle, 2001). Maximum length (L_{max}), typically coupled with maximum age, is typically used as a proxy for fish longevity which has implications on the productivity and susceptibility of a species to fishing pressure. The length-weight coefficients (a & b values) are used to convert length to weight for fishery-dependent and fishery-independent data collection where length are typically recorded but weight is the factor being used for management. This section of the report presents the best available information for the length-derived variables for the bottomfish fisheries.

Species		Leng		Reference			
Species	L _{max}	L _{bar}	N	L-W	а	b	Reference
Lethrinus rubrioperculatus	38.0	28.01	1,353	1,021	0.0185	2.9897	
Etelis carbunculus	53.5	30.18	685	685	0.0150	3.0430	
Pristipomoides auricilla	39.5	28.59	465	465	0.0189	3.0060	
Pristipomoides zonatus	45.4	32.99	371	370	0.0180	3.0411	
Etelis coruscans	96.4	72.50	325	325	0.0716	2.6147	
Lutjanus kasmira	32.5	24.84	258	258	0.0087	3.2307	
Pristipomoides flavipinnis	51.5	37.05	168	168	0.0133	3.0762	
Pristipomoides	31.6	24.44	150	150	0.0174	3.0464	
argyrogrammicus	51.0	27.77	150	150	0.0174	5.0404	
Pristipomoides filamentosus	58.5	39.97	123	123	0.0773	2.5914	
Caranx lugubris	82.5	46.07	122	122	0.0309	2.8768	

Table 54. Available length-derived information for various bottomfish species in CNMI

Figure 7. Average length over time of CNMI BMUS derived from the Biosampling Program; continued from previous page

2.2.3 Guam Coral Reef Ecosystem – Reef Fish Life History

2.2.3.1 Age & Growth and Reproductive Maturity

Description: Age determination is based on counts of yearly growth marks (annuli) and/or daily growth increments (DGIs) internally visible within transversely-cut, thin sections of sagittal otoliths. Validated age determination, particularly for long-lived (\geq 30 years) fish, is based on an environmental signal (bomb radiocarbon ¹⁴C) produced during previous atmospheric thermonuclear testing in the Pacific and incorporated into the core regions of sagittal otolith and other aragonite-based calcified structures such as hermatypic corals. This technique relies on developing a regionally-based aged coral core reference series for which the rise, peak, and decline of ¹⁴C values is available over the known age series of the coral core. Estimates of fish age are determined by projecting the ¹⁴C otolith core values back in time from its capture date to where it intersects with the known age ¹⁴C coral reference series. The relation between age and fish length is evaluated by fitting this data to a von Bertalanffy growth function based on statistical analyses. The resulting von Bertalanffy growth function predicts the pattern of growth over time for that particular species. This function typically uses three coefficients (L_∞, *k*, and *t*₀) which together characterize the shape of the length-at-age growth relationship.

Length at reproductive maturity is based on the histological analyses of small tissue samples of gonad material that are typically collected along with otoliths when a fish is processed for life history studies. The gonad tissue sample is preserved then subsequently cut into five-micron sections, stained, and sealed onto a glass slide for subsequent examination. Based on standard cell structure features and developmental stages within ovaries and testes, the gender, developmental stage, and maturity status (immature or mature) is determined via microscopic evaluation. The percent of mature samples for a given length interval are assembled for each sex and these data are fitted to a three- or four-parameter logistic function to determine the best fit of these data based on statistical analyses. The mid-point of this fitted function provides an estimate of the length at which 50% of fish have achieved reproductive maturity (L_{50}) . For species that undergo sex reversal (primarily female to male in the tropical Pacific region), such as groupers and deeper-water emperors among the bottomfishes, and for parrotfish, shallow-water emperors, and wrasses among the coral reef fishes, standard histological criteria are used to determine gender and reproductive developmental stages that indicate the transitioning or completed transition from one sex to another. These data are similarly analyzed using a 3- or 4-parameter logistic function to determine the best fit of the data based on statistical analyses. The mid-point of this fitted function provides an estimate of the length at which 50% of fish of a particular species have or are undergoing sex reversal $(L\Delta_{50})$.

Age at 50% maturity (A_{50}) and 50% sex reversal ($A\Delta_{50}$) is typically derived by referencing the von Bertalanffy growth function for that species and using the corresponding L_{50} and $L\Delta_{50}$ values to obtain the corresponding age value from this growth function. In studies where both age & growth and reproductive maturity are concurrently determined, estimates of A_{50} and $A\Delta_{50}$ are derived directly by fitting the percent of mature samples for each age (one-year) interval to a three- or four-parameter logistic function using statistical analyses. The mid-point of this fitted

logistic function provides a direct estimate of the age at which 50% of fish of a particular species have achieved reproductive maturity (A_{50}) and sex reversal ($A\Delta_{50}$).

Category: Biological

Timeframe: N/A

Jurisdiction: Guam

Spatial Scale: Island

Data Source: Sources of data are directly derived from research cruises sampling and market samples collected by the Guam-contracted bio-sampling team which samples the catch of fishermen and local fish vendors. Laboratory analyses and data generated from these analyses reside with the PIFSC Life History Program. Refer to the "Reference" column in Table 55 for specific details on data sources by species.

Parameter definitions:

 T_{max} (maximum age) – The maximum observed age revealed from an otolith-based age determination study. T_{max} values can be derived from ages determined by annuli counts of sagittal otolith sections and/or bomb radiocarbon (¹⁴C) analysis of otolith core material. Units are years.

 L_{∞} (asymptotic length) – One of three coefficients of the von Bertalanffy growth function (VBGF) that measures the mean maximum length at which the growth curve plateaus and no longer increases in length with increasing age. This coefficient reflects the mean maximum length and not the observed maximum length. Units are centimeters.

k (growth coefficient) – One of three coefficients of the VBGF that measures the shape and steepness by which the initial portion of the growth function approaches its mean maximum length (L_{∞}) .

 t_0 (hypothetical age at length zero) – One of three coefficients of the VBGF whose measure is highly influenced by the other two VBGF coefficients (k and L_{∞}) and typically assumes a negative value when specimens representing early growth phases (0+ to 1+ ages) are not available for age determination. Units are years.

M (natural mortality) – This is a measure of mortality rate for a fish stock not under the influence of fishing pressure and is considered to be directly related to stock productivity (i.e., high M indicates high productivity and low M indicates low stock productivity). M can be derived through use of various equations that link M to T_{max} and k, or in some instances, by calculating the value of the slope from a regression fit to a declining catch curve (regression of the natural logarithm of abundance versus age class) derived from fishing an unfished or lightly fished population.

 A_{50} (age at 50% maturity) – Age at which 50% of the sampled stock under study has attained reproductive maturity. This parameter is best determined based on studies that concurrently

determine both age (otolith-based age data) and reproductive maturity status (logistic function fitted to percent mature by age class with maturity determined via microscopic analyses of gonad histology preparations). A more approximate means of estimating A_{50} is to use an existing L_{50} estimate to find the corresponding age (A_{50}) from an existing VBGF curve. Units are years.

 $A\Delta_{50}$ (age of sex switching) – Age at which 50% of the immature and adult females of the sampled stock under study is undergoing or has attained sex reversal. This parameter is best determined based on studies that concurrently determines both age (otolith-based age data) and reproductive sex reversal status (logistic function fitted to percent sex reversal by age class with sex reversal determined via microscopic analyses of gonad histology preparations). A more approximate means of estimating $A\Delta_{50}$ is to use an existing $L\Delta_{50}$ estimate to find the corresponding age ($A\Delta_{50}$) from the VBGF curve. Units are years.

 L_{50} (length at which 50% of a fish species are capable of spawning) – Length (usually in terms of fork length) at which 50% of the females of a sampled stock under study has attained reproductive maturity; this is the length associated with A_{50} estimates. This parameter is derived using a logistic function to fit the percent mature data by length class with maturity status best determined via microscopic analyses of gonad histology preparations). L_{50} information is typically more available than A_{50} since L_{50} estimates do not require knowledge of age & growth. Units are centimeters

 $L\Delta_{50}$ (length of sex switching) – Length (usually in terms of fork length) at which 50% of the immature and adult females of the sampled stock under study is undergoing or has attained sex reversal; this is the length associated with $A\Delta_{50}$ estimates. This parameter is derived using a logistic function to fit the percent sex reversal data by length class with sex reversal status best determined via microscopic analyses of gonad histology preparations. $L\Delta_{50}$ information is typically more available than $A\Delta_{50}$ since $L\Delta_{50}$ estimates do not require knowledge of age & growth. Units are centimeters.

Rationale: These nine life history parameters provide basic biological information at the species level to evaluate the productivity of a stock - an indication of the capacity of a stock to recover once it has been depleted. Currently, the assessment of coral reef fish resources in Guam is data-limited. Knowledge of these life history parameters support current efforts to characterize the resilience of these resources and also provide important biological inputs for future stock assessment efforts and enhance our understanding of the species' likely role and status as a component of the overall ecosystem. Furthermore, knowledge of life histories across species at the taxonomic level of families or among different species that are ecologically or functionally similar can provide important information on the diversity of life histories and the extent to which species can be grouped (based on similar life histories) for future multi-species assessments.

 Table 55. Available age, growth, and reproductive maturity information for coral reef

 species targeted for otoliths and gonads sampling in Guam

Species	Age,	growth,	neters	Reference				
	T _{max}	L_{∞}	k	t ₀	A ₅₀	L_{50}	$L\Delta_{5\theta}$	
Calatomus	3 ^d	26.3 ^d	0.91 ^d	-0.065 ^d	1.14 ^d	16.8 ^d	21.3 ^d	Taylor and Choat

carolinus								(2014)
Oxycheilinus unifasciatus								
Chlorurus frontalis	11 ^d	37.2 ^d	0.71 ^d	-0.058 ^d	1.55 ^d	24.0 ^d	34.3 ^d	Taylor and Choat (2014)
Chlorurus microrhinos	11 ^d	45.7 ^d	0.34 ^d	-0.097 ^d	3.7 ^d	30.8 ^d	37.8 ^d	Taylor and Choat (2014)
Chlorurus spilurus	9 ^d	21.8 ^d	0.95 ^d	-0.075 ^d	1.3 ^d	14.4 ^d	20.7 ^d	Taylor and Choat (2014)
Hipposcarus longiceps	10 ^d	39.6 (f), 46.6 (m) ^d	0.97 (f), 0.67 (m) ^d	-0.04 (f), -0.05 (m) d		40.1 ^d		Taylor and Cruz (2017)
Naso lituratus	13d	20.4 ^d	0.93 ^d	-0.030 ^d	2.4 $(m)^d$	14.5 (f), 17.8 (m) ^d		Taylor et al. (2014)
Naso unicornis	23 ^d	49.3 ^d	0.22 ^d	-0.048 ^d	$4.0 (f), 3.2 (m)^d$	29.2 (f), 27.1 (m) ^d		Taylor et al. (2014)
Scarus altipinnis	14 ^d	33.9 ^d	0.66 ^d	-0.69 ^d	2.89 ^d	25.1 ^d	33.7 ^d	Taylor and Choat (2014)
Scarus forsteni	12 ^d	28.1 ^d	0.88 ^d	-0.62 ^d	1.79 ^d	21.6 ^d	27.1 ^d	Taylor and Choat (2014)
Scarus psittacus	6 ^d	20.7 ^d	0.91 ^d	-0.083 ^d	1.36 ^d	10.3 ^d	19.3 ^d	Taylor and Choat (2014)
Scarus rubroviolaceus	6 ^d	37.6 ^d	0.66 ^d	-0.062 ^d	1.91 ^d	27.1 ^d	32.9 ^d	Taylor and Choat (2014)
Scarus schlegeli	8 ^d	25.2 ^d	1.03 ^d	-0.06 ^d	1.99 ^d	19.7 ^d	22.0 ^d	Taylor and Choat (2014)

^a signifies estimate pending further evaluation in an initiated and ongoing study.

^b signifies a preliminary estimate taken from ongoing analyses.

^c signifies an estimate documented in an unpublished report or draft manuscript.

^d signifies an estimate documented in a finalized report or published journal article (including in press).

Parameter estimates are for females unless otherwise noted (F=females, M=males). Parameters T_{max} , t_0 , A_{50} , and $A\Delta_{50}$ are in units of years; L_{∞} , L_{50} , and $L\Delta_{50}$ are in units of mm fork length (FL); k in units of year⁻¹; X=parameter estimate too preliminary or Y=published age and growth parameter estimates based on DGI numerical integration technique and likely to be inaccurate; NA=not applicable. Superscript letters indicate status of parameter estimate (see footnotes below table). Published or in press publications (^d) are denoted in "Reference" column.

2.2.3.2 Fish Length Derived Parameters

Description: The NMFS Commercial Fishery Biosampling Program started in 2009. This program has two components: first is the Field/Market Sampling Program and the second is the

Life History Program, details of which are described in a separate section of this report. The goals of the Field/Market Sampling Program are:

- Broad scale look at commercial landings (by fisher/trip, gear, and area fished);
- Length and weight frequencies of whole commercial landings per fisher-trip (with an effort to also sample landings not sold commercially);
- Accurate species identification;
- Develop accurate local length-weight curves.

In the Guam, the Biosampling is focused on the commercial coral reef spear fishery with occasional sampling of the bottomfish fishery occurring locally and less frequently at the banks. Sampling is conducted in direct partnership with the spear fisherman. The Market Sampling information includes (but not limited to): 1) fish length; 2) fish weight; 3) species identification; and 4) basic effort information.

Category: Biological

Timeframe: N/A

Jurisdiction: Guam

Spatial Scale: Island

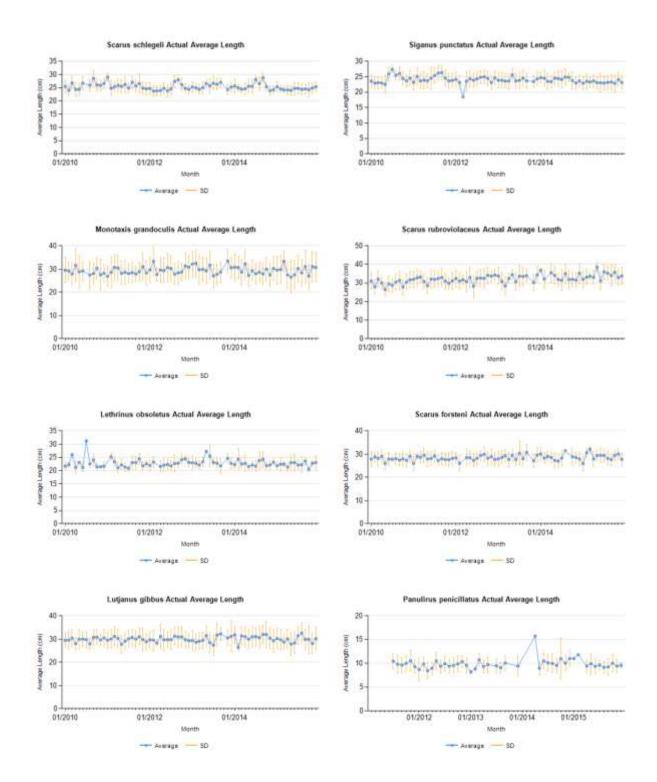
Data Source: NMFS Biosampling Program

Parameter definition:

 L_{max} – maximum fish length is the longest fish per species recorded in the Biosampling Program from the commercial spear fishery. This value is derived from measuring the fork length of individual samples for species occurring in the spear fishery.

 L_{bar} – *mean length* is the average value of all lengths recorded from the commercial spear fishery. This can be influenced by gear selectivity since the commercial spear fishery has a typical size target based on customer demand. This can also be influenced by size regulations.

n - sample size is the total number of samples accumulated for each species recorded in the commercial spear fishery.


 N_{L-W} – sample size for L-W regression is the number of samples used to generate the a & b coefficients.

a & b - length-weight coefficients are the coefficients derived from the regression line fitted to all length and weight measured per species in the commercial spear fishery. These values are used to convert length information to weight. Values are influenced by the life history characteristics of the species, geographic location, population status, and nature of the fisheries from which the species are harvested **Rationale:** Length-derived information is being used as an indicator of population status particularly for data-poor stocks like coral reef fish. Average length (L_{bar}) was used as a principal stock assessment indicator variable for exploited reef fish population (Nadon et al., 2015). Average length was also shown to be correlated with population size (Kerr and Dickle, 2001). Maximum length (L_{max}), typically coupled with maximum age, is typically used as a proxy for fish longevity which has implications on the productivity and susceptibility of a species to fishing pressure. The length-weight coefficients (a & b values) are used to convert length to weight for fishery dependent and fishery independent data collection where length are typically recorded but weight is the factor being used for management. This section of the report presents the best available information for the length-derived variables for the CNMI coral reef and bottomfish fisheries.

Creation		Length-	derived p	arameters	5	Reference
Species	L _{max}	Lbar	n	a	b	
Naso unicornis	57.2	38.02	15,461	0.0278	2.9135	2010-2015 Guam Bio- Sampling Database
Naso lituratus	29.6	21.35	16,702	0.0223	3.0264	
Acanthurus lineatus	28.9	19.04	4,325	0.0473	2.8110	
Scarus altipinnis	46.4	31.16	3,913	0.0207	3.0040	
Myripristis bendti	29.4	18.63	3,903	0.0858	2.5911	
Siganus argenteus	34.5	21.71	3,653	0.0163	3.0428	
Acanthurus nigricauda	29.1	21.40	3,500	0.0511	2.7811	
Hipposcarus longiceps	51.4	37.30	3,149	0.0172	3.0320	
Scarus schlegeli	36.2	25.19	2,787	0.0205	3.0033	
Siganus punctatus	32.0	23.97	2,619	0.0199	3.0690	
Monotaxis grandoculis	48.9	29.17	2,388	0.0440	2.8384	
Scarus rubroviolaceus	47.8	31.91	2,192	0.0114	3.1812	
Lethrinus obsoletus	34.7	22.15	2,273	0.0169	3.0471	
Scarus forsteni	39.1	28.13	1,801	0.0149	3.1169	
Lutjanus gibbus	43.5	29.99	1,687	0.0195	3.0274	
Parupeneus insularis	28.5	21.89	1,560	0.0178	3.0865	
Siganus spinus	27.5	16.53	1,670	0.0353	2.7886	
Lethrinus atkinsoni	33.7	21.93	1,644	0.0215	3.0217	
Chlorurus microrhinus	50.5	32.54	1,527	0.0187	3.0520	
Chlorurus sordidus	33.1	22.39	1,234	0.0208	3.0293	
Kyphosus cinerascens	50.7	29.94	1,146	0.0323	2.9267	

Table 56. Available length derived information for various coral reef species in Guam

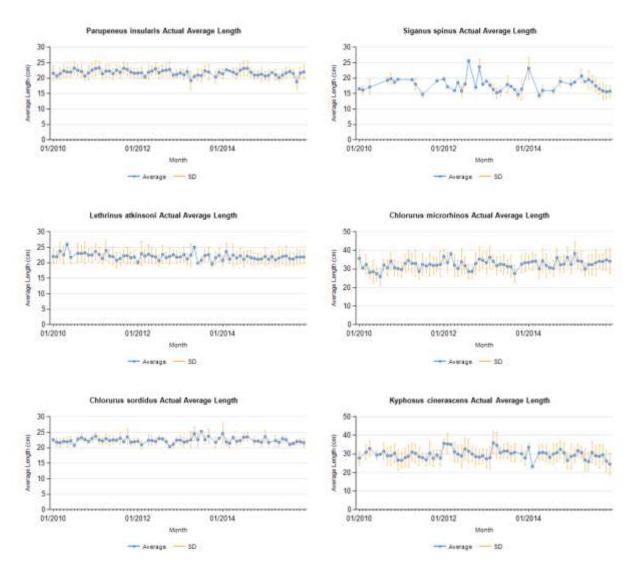


Figure 8. Average length over time of representative Guam CREMUS derived from the Biosampling Program; continued from previous two pages

2.2.4 Guam Bottomfish Ecosystem – Bottomfish Life History

2.2.4.1 Age & Growth and Reproductive Maturity

Description: Age determination is based on counts of yearly growth marks (annuli) and/or daily growth increments (DGIs) internally visible within transversely-cut thin sections of sagittal otoliths. Validated age determination is based on an environmental signal (bomb radiocarbon ¹⁴C) produced during previous atmospheric thermonuclear testing in the Pacific and incorporated into the core regions of sagittal otolith and other aragonite-based calcified structures such as hermatypic corals. This technique relies on developing a regionally-based aged coral core reference series for which the rise, peak, and decline of ¹⁴C values is available over the known age series of the coral core. Estimates of fish age are determined by projecting the ¹⁴C otolith core values back in time from its capture date to where it intersects with the known age ¹⁴C coral reference series. The relation between age and fish length is evaluated by fitting this data to a von Bertalanffy growth function based on statistical analyses. The resulting von Bertalanffy

growth function predicts the pattern of growth over time for that particular species. This function typically uses three coefficients (L_{∞} , k, and t_{0}) which together characterize the shape of the length-at-age growth relationship.

Length-at-reproductive maturity is based on the histological analyses of small tissue samples of gonad material that are typically collected along with otoliths when a fish is processed for life history studies. The gonad tissue sample is preserved then subsequently cut into five micron sections, stained, and sealed onto a glass slide for subsequent examination. Based on standard cell structure features and developmental stages within ovaries and testes, the gender, developmental stage, and maturity status (immature or mature) is determined via microscopic evaluation. The percent of mature samples for a given length interval are assembled for each sex and these data are fitted to a three- or four-parameter logistic function to determine the best fit of these data based on statistical analyses. The mid-point of this fitted function provides an estimate of the length at which 50% of fish have achieved reproductive maturity (L_{50}) . For species that undergo sex reversal (primarily female to male in the tropical Pacific region), such as groupers and deeper-water emperors among the bottomfishes, and for parrotfish, shallow-water emperors, and wrasses among the coral reef fishes, standard histological criteria are used to determine gender and reproductive developmental stages that indicate the transitioning or completed transition from one sex to another. These data are similarly analyzed using a three- or fourparameter logistic function to determine the best fit of the data based on statistical analyses. The mid-point of this fitted function provides an estimate of the length at which 50% of fish of a particular species have or are undergoing sex reversal $(L\Delta_{50})$.

Age at 50% maturity (A_{50}) and 50% sex reversal ($A\Delta_{50}$) is typically derived by referencing the von Bertalanffy growth function for that species and using the corresponding L_{50} and $L\Delta_{50}$ values to obtain the corresponding age value from this growth function. In studies where both age & growth and reproductive maturity are concurrently determined, estimates of A_{50} and $A\Delta_{50}$ are derived directly by fitting the percent of mature samples for each age (one-year) interval to a three- or four-parameter logistic function using statistical analyses. The mid-point of this fitted logistic function provides a direct estimate of the age at which 50% of fish of a particular species have achieved reproductive maturity (A_{50}) and sex reversal ($A\Delta_{50}$).

Category: Biological

Timeframe: N/A

Jurisdiction: Guam

Spatial Scale: Island

Data Source: Sources of data are directly derived from research cruises sampling and market samples collected by the Guam-contracted bio-sampling team which samples the catch of fishermen and local fish vendors. Laboratory analyses and data generated from these analyses reside with the PIFSC Life History Program. Refer to the "Reference" column in Table 57 for specific details on data sources by species.

Parameter definitions:

 T_{max} (maximum age) – The maximum observed age revealed from an otolith-based age determination study. T_{max} values can be derived from ages determined by annuli counts of sagittal otolith sections and/or bomb radiocarbon (¹⁴C) analysis of otolith core material. Units are years.

 L_{∞} (asymptotic length) – One of three coefficients of the von Bertalanffy growth function (VBGF) that measures the mean maximum length at which the growth curve plateaus and no longer increases in length with increasing age. This coefficient reflects the mean maximum length and not the observed maximum length. Units are centimeters.

k (growth coefficient) – One of three coefficients of the VBGF that measures the shape and steepness by which the initial portion of the growth function approaches its mean maximum length (L_{∞}) .

 t_0 (hypothetical age at length zero) – One of three coefficients of the VBGF whose measure is highly influenced by the other two VBGF coefficients (k and L_{∞}) and typically assumes a negative value when specimens representing early growth phases (0+ to 1+ ages) are not available for age determination. Units are years.

M (natural mortality) – this is a measure of mortality rate for a fish stock not under the influence of fishing pressure and is considered to be directly related to stock productivity (i.e., high *M* indicates high productivity and low *M* indicates low stock productivity). *M* can be derived through use of various equations that link *M* to T_{max} and two VBGF coefficients (*k* and L_{∞}) or by calculating the value of the slope from a regression fit to a declining catch curve (regression of the natural logarithm of abundance versus age class) derived from fishing an unfished or lightly fished population.

 A_{50} (age at 50% maturity) – Age at which 50% of the sampled stock under study has attained reproductive maturity. This parameter is best determined based on studies that concurrently determine both age (otolith-based age data) and reproductive maturity status (logistic function fitted to percent mature by age class with maturity determined via microscopic analyses of gonad histology preparations). A more approximate means of estimating A_{50} is to use an existing L_{50} estimate to find the corresponding age (A_{50}) from an existing VBGF curve. Units are years.

 $A\Delta_{50}$ (age of sex switching) – Age at which 50% of the immature and adult females of the sampled stock under study is undergoing or has attained sex reversal. This parameter is best determined based on studies that concurrently determines both age (otolith-based age data) and reproductive sex reversal status (logistic function fitted to percent sex reversal by age class with sex reversal determined via microscopic analyses of gonad histology preparations). A more approximate means of estimating $A\Delta_{50}$ is to use an existing $L\Delta_{50}$ estimate to find the corresponding age ($A\Delta_{50}$) from the VBGF curve. Units are years.

 L_{50} (length at which 50% of a fish species are capable of spawning) – Length (usually in terms of fork length) at which 50% of the females of a sampled stock under study has attained reproductive maturity; this is the length associated with A_{50} estimates. This parameter is derived using a logistic function to fit the percent mature data by length class with maturity status best determined via microscopic analyses of gonad histology preparations). L_{50} information is

typically more available than A_{50} since L_{50} estimates do not require knowledge of age & growth. Units are centimeters.

 $L\Delta_{50}$ (length of sex switching) – Length (usually in terms of fork length) at which 50% of the immature and adult females of the sampled stock under study is undergoing or has attained sex reversal; this is the length associated with $A\Delta_{50}$ estimates. This parameter is derived using a logistic function to fit the percent sex reversal data by length class with sex reversal status best determined via microscopic analyses of gonad histology preparations. $L\Delta_{50}$ information is typically more available than $A\Delta_{50}$ since $L\Delta_{50}$ estimates do not require knowledge of age & growth. Units are centimeters.

Rationale: These nine life history parameters provide basic biological information at the species level to evaluate the productivity of a stock - an indication of the capacity of a stock to recover once it has been depleted. Currently, the assessment of coral reef fish resources in Guam is data-limited. Knowledge of these life history parameters support current efforts to characterize the resilience of these resources and also provide important biological inputs for future stock assessment efforts and enhance our understanding of the species' likely role and status as a component of the overall ecosystem. Furthermore, knowledge of life histories across species at the taxonomic level of families or among different species that are ecologically or functionally similar can provide important information on the diversity of life histories and the extent to which species can be grouped (based on similar life histories) for future multi-species assessments.

Species	A	ige, g	row	,		produ neters	ictive n	naturit	t y	Reference	
species	T _{max}	L_{∞}	k	t_0	M	A 50	$A\Delta_{50}$	L_{50}	$L\Delta_{50}$	Reference	
Aphareus rutilans							NA		NA		
Aprion virescens							NA		NA		
Etelis carbunculus							NA		NA		
Etelis coruscans							NA		NA		
Monotaxis grandoculis	X ^a	X ^a	X ^a	X ^a	X ^a					Cruz et al. (in prep.)	
Pristipomoides auricilla	X ^c	X ^c	X ^a	X ^a	X ^a		NA		NA	O'Malley et al. (in review)	
Pristipomoides filamentosus	X ^a	X ^a	X ^a	X ^a	X ^a		NA		NA	Villagomez et al. (in prep.)	
Pristipomoides flavipinnis							NA		NA		
Pristipomoides sieboldii							NA		NA		
Pristpomoides zonatus	X ^a	X ^a	X ^a	X ^a	X ^a		NA		NA	LHP (in prep.)	
Variola louti								220 ^b	X ^a		

Table 57. Available age, growth, and reproductive maturity information for bottomfishspecies targeted for life history sampling (otoliths and gonads) in Guam

^a signifies estimate pending further evaluation in an initiated and ongoing study.

^b signifies a preliminary estimate taken from ongoing analyses.

^c signifies an estimate documented in an unpublished report or draft manuscript.

^d signifies an estimate documented in a finalized report or published journal article (+ in press).

Parameter estimates are for females unless otherwise noted (F=females, M=males). Parameters T_{max} , t_0 , A_{50} , and $A\Delta_{50}$ are in units of years; L_{∞} , L_{50} , and $L\Delta_{50}$ are in units of mm fork length (FL); k in units of year⁻¹; X=parameter estimate too preliminary or Y=published age and growth parameter estimates based on DGI numerical integration technique and likely to be inaccurate; NA=not applicable. Superscript letters indicate status of parameter estimate (see footnotes below table). Published or in press publications (^d) are denoted in "Reference" column.

2.2.4.2 Fish Length Derived Parameters

Description: The NMFS Commercial Fishery Biosampling Program started in 2009. This program has two components: first is the Field/Market Sampling Program and the second is the Life History Program, details of which are described in a separate section of this report. The goals of the Field/Market Sampling Program are:

- Broad scale look at commercial landings (by fisher/trip, gear, and area fished);
- Length and weight frequencies of whole commercial landings per fisher-trip (with an effort to also sample landings not sold commercially);
- Accurate species identification;
- Develop accurate local length-weight curves.

In Guam, the Biosampling is focused on the commercial fishery. Sampling is conducted in partnership with the Guam Fisherman's Cooperative Association (GFCA). The Market Sampling information includes (but not limited to): 1) fish length; 2) fish weight; 3) species identification; and 4) basic effort information. More specific fishery information such as gear information, species composition and total catch information is recorded through the log book system implemented by GFCA and transcribed into the database maintained by the Western Pacific Fishery Information Network.

Category: Biological

Timeframe: N/A

Jurisdiction: Guam

Spatial Scale: Island

Data Source: NMFS Biosampling Program

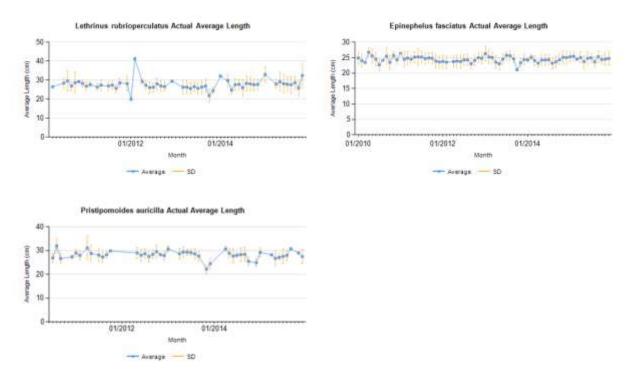
Parameter definition:

 L_{max} – maximum fish length is the longest fish per species recorded in the Biosampling Program from the commercial spear fishery. This value is derived from measuring the fork length of individual samples for species occurring in the spear fishery. Units are centimeters.

 L_{bar} – *mean length* is the average value of all lengths recorded from the commercial spear fishery. This can be influenced by gear selectivity since the commercial spear fishery has a

typical size target based on customer demand. This can also be influenced by size regulations. Units are centimeters.

n - sample size is the total number of samples accumulated for each species recorded in the commercial spear fishery.


 N_{L-W} – sample size for L-W regression is the number of samples used to generate the a & b coefficients

a & b - length-weight coefficients are the coefficients derived from the regression line fitted to all length and weight measured per species in the commercial spear fishery. These values are used to convert length information to weight. Values are influenced by the life history characteristics of the species, geographic location, population status, and nature of the fisheries from which the species are harvested from.

Rationale: Length-derived information is being used as an indicator of population status particularly for data-poor stocks like coral reef fish. Average length (L_{bar}) was used as a principal stock assessment indicator variable for exploited reef fish population (Nadon et al., 2015). Average length was also shown to be correlated with population size (Kerr and Dickle, 2001). Maximum length (L_{max}), typically coupled with maximum age, is typically used as a proxy for fish longevity which has implications on the productivity and susceptibility of a species to fishing pressure. The length-weight coefficients (a & b values) are used to convert length to weight for fishery dependent and fishery independent data collection where length are typically recorded but weight is the factor being used for management. This section of the report presents the best available information for the length-derived variables for the CNMI coral reef and bottomfish fisheries.

Encoios		Length	-derive	d parame	ters	Reference
Species	L _{max}	L _{bar}	n	а	b	
Lethrinus rubrioperculatus	46.6	27.10	3374	0.0248	2.9158	2010-2015 Guam Biosampling Database
Epinephelus fasciatus	35.8	24.01	3033	0.0141	3.0303	
Pristipomoides auricilla	39.0	28.18	1732	0.0152	3.0742	

Table 58. Available length derived information for various bottomfish species in Guam

Figure 9. Average length over time of representative Guam BMUS derived from the Biosampling Program

2.2.5 References

- Kerr, S.R. and L.M. Dickie. 2001. *The biomass spectrum: a predator-prey theory of aquatic production*. Columbia University Press.
- Nadon, M.O., Ault, J.S., Williams, I.D., Smith, S.G., and G.T. DiNardo. 2015. Length-based assessment of coral reef fish populations in the Main and Northwestern Hawaiian Islands. *PLoS One*, *10*(8), p.e0133960.
- Ralston S.V. and H.A. Williams. 1988. Depth distributions, growth, and mortality of deep slope fishes from the Mariana Archipelago. U.S. Dept. of Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-SWFC-113, 47 pp.
- Taylor, B.M. and J.H. Choat. 2014. Comparative demography of commercially important parrotfish species from Micronesia. *J. Fish Biol.* 84, pp. 383-402.
- Taylor, B.M., Rhodes, K.L., Marshell, A., and J.L. McIlwain. 2014. Age-based demographic and reproductive assessment of orangespine *Naso lituratus* and bluespine *Naso unicornis* unicornfishes. *J. Fish Biol.* 85, pp. 901–916. <u>https://doi:10.1111/jfb.12479</u>.
- Taylor, B.M., Gourley J., and M.S. Trianni. 2016. Age, growth, reproductive biology and spawning periodicity of the forktail rabbitfish (*Siganus argenteus*) from the Mariana Islands. *Marine & Freshwater Research*. <u>https://doi.org/10.1071/MF16169</u>.

- Taylor B.M. and E. Cruz. 2017. Age-based and reproductive biology of the Pacific Longnose Parrotfish *Hipposcarus longiceps* from Guam. *PeerJ*, 5:e4079. <u>https://doi.org/10.7717/peerj.4079</u>.
- Taylor B.M., Oyafuso Z.S., and M.S. Trianni. 2017. Life history of the orange-striped emperor *Lethrinus obsoletus* from the Mariana Islands. *Ichth. Res.*, *4*, pp. 423–432 <u>https://doi.org/10.1007/s10228-017-0573-8</u>.

2.3 SOCIOECONOMICS

This section outlines the pertinent economic, social, and community information available for assessing the successes and impacts of management measures or the achievements of the Fishery Ecosystem Plan for the Marianas Archipelago (Western Pacific Regional Fishery Management Council, 2016). It meets the objective "Support Fishing Communities" adopted at the 165th Council meeting; specifically, it identifies the various social and economic groups within the region's fishing communities and their interconnections. The section begins with an overview of the socioeconomic context for the region, and then provides a summary of relevant studies and data for CNMI and Guam, followed by summaries of relevant studies and data for each fishery in CNMI and Guam.

In 1996, the Magnuson-Stevens Fishery Conservation and Management Act's National Standard 8 (NS8) specified that conservation and management measures take into account the importance of fishery resources to fishing communities, to provide for their sustained participation in fisheries and to minimize adverse economic impacts, provided that these considerations do not compromise the achievement of conservation. Unlike other regions of the U.S., the settlement of the Western Pacific region was intimately tied to the sea (Figure 10), which is reflected in local culture, customs, and traditions.



Figure 10. Settlement of the Pacific Islands, courtesy of Wikimedia Commons, <u>https://commons.wikimedia.org/wiki/File:Polynesian_Migration.svg</u>.

Polynesian voyagers relied on the ocean and marine resources on their long voyages in search of new islands, as well as in sustaining established island communities. Today, the population of the region also represents many Asian cultures from Pacific Rim countries, which reflect similar importance of marine resources. Thus, fishing and seafood are integral local community ways of life. This is reflected in the amount of seafood eaten in the region relative to the rest of the United States, as well as the language, customs, ceremonies, and community events. Because fishing is such an integral part of the culture, it is difficult to discern commercial from non-commercial fishing as most trips involving multiple motivations and multiple uses of the fish caught. While economics are an important consideration, fishermen report other motivations, such as customary exchange, as being equally important. Due to changing economies and westernization, recruitment of younger fishermen has become a concern for the sustainability of fishing and fishing traditions in the region.

The Marianas Archipelago consists of the Commonwealth of the Northern Mariana Islands (CNMI) at the northern end and Guam, the southernmost island. These are typically treated as two jurisdictions, which will be presented separately in the rest of this section despite being grouped under one FEP.

2.3.1 Response to Previous Council Recommendations

At its 173rd meeting held in Wailea, HI, the Council recommended NMFS to address data gaps and research needs for ESA-listed shark species, such as

- improving data collection for oceanic whitetip shark capture data in non-longline pelagic fisheries; and
- conducting outreach to fishermen to improve species identification for shark species to facilitate improved accurate catch data reporting.

At the 174th Council meetings in Saipan and Guam, PIFSC staff met with members of the Marianas fishing community to discuss their concerns related to shark depredation for both insular and pelagic fisheries across the Marianas Archipelago and consider possible research opportunities.

Current research by PIFSC social scientists is working towards identifying patterns in oceanic whitetip shark interactions, handling practices, and perceptions within West Hawaii's non-longline pelagic fisheries, based on interviews with the fishing community (Oct. 2017 - Sept. 2018). The goal of this research is to identify opportunities and barriers to engaging fishermen in science- and management-based efforts (like shark identification, catch reporting, and mortality reduction). Research results are expected by May 2019.

PIFSC received funding in early 2019 to extent this West Hawaii research to both insular and pelagic fisheries in the Marianas. Research will be conducted in 2019-2020 with the goal to engage the Marianas fishing community to better understand the nature of shark interactions and explore mitigation techniques aligned with community needs and values.

2.3.2 CNMI

2.3.2.1 Introduction

An overview of CNMI history, culture, geography, and relationship with the U.S. is described in the Fishery Ecosystem Plan for the Mariana Archipelago (Western Pacific Regional Fishery Management Council, 2016). Over the past decade, a number of studies have synthesized more specifics about the role of fishing and marine resources across CNMI, as well as information about the people who engage in the fisheries or use fishery resources.

The ancestors of the indigenous Chamorro first arrived in the Marianas around 3,500 years ago and relied on seafood as their principal source of protein (Allen and Amesbury, 2012, and Grace McCaskey, 2014). Similar to other archipelagos in the Western Pacific, fish and marine resources have played a central role in shaping the social, cultural, and economic fabric of the CNMI that continues today. They fished for both reef and pelagic species, collected mollusks and other invertebrates, and caught sea turtles. The occupation of CNMI by foreign nations dramatically changed the island's ecosystems, reshaped communities, and disrupted fishing traditions. In the 17th and 18th centuries, Spanish colonizers destroyed the Chamorro's seagoing canoes, suppressed offshore fishing practices, and relocated populations from their traditional home. The CNMI was briefly occupied by Germany from 1899 to the beginning of WWII. During WWII, the CNMI was occupied by the Japanese military, and then was captured by the United States. Throughout this time, fishing remained an important activity. Later immigrants to the islands from East and Southeast Asia also possessed a strong fishing tradition. Today, only Saipan, Rota, and Tinian are permanently inhabited, with 90% of the population living on the island of Saipan. Although the CNMI has transitioned to a tourism-based economy, fishing still plays an important cultural role and serves as a reliable source of local food (Ayers, 2018).

2.3.2.2 People who Fish

Allen and Amesbury (2012) summarized results of studies that demonstrated the sociocultural importance of fishing to Saipan residents. In a 2005 study, most of the active or commercial fishermen who responded to the survey had fished for more than 10 years. They most often participated in snorkel spearfishing at night (participated in by 73% of the fishermen) and snorkel spear fishing during daytime (58% of the fishermen), followed by hook-and-line less than 100 ft. deep (36%), trolling (21%), cast net (talaya; 14%), hook-and-line more than 100 ft. deep (9%), trapping (octopus, crabs, etc.; 19%), and foraging the reef (8%); 18% said they participated in one or more other techniques. Less than a third (~30%) said they owned a boat. The primary reasons for fishing were social, cultural, and nutrition; in addition to reporting that they enjoy the activity itself (32%), many said they needed the fish to feed their family (23%), give to family and friends to strengthen social bonds (13%), that their family has always fished (12%), and that it strengthens bonds with their children/family (6%). Only 4% said they needed the money from the fish they sold. Other motivations included strengthening the bond with their fellow fishermen, fishing to catch fish for festivals and parties, and seasonal fishing for manahak, ti'ao, and i'e (2% each).

The fishermen reported fishing an average of 71 days per year, with 26% going once every two to three days, and 24% fishing once every two weeks. Those surveyed also reported a decrease in the amount of time they have spent fishing in the past decade, fishing 93 days per year on

average. Saipan reef fish were the most frequently harvested species (caught by 54% of the fishermen), followed by shallow-water bottomfish (23%) and reef invertebrates such as octopus, shellfish and crabs (14%).

As in other parts of the region, much of the fisher's catch in the CNMI was consumed by themselves and their immediate family (70%), with another 20% consumed by extended family and friends. Only 8% of the catch was sold. There were 18 respondents that identified themselves as commercial fishermen. They reported a median monthly income of \$200 from fishing, with average monthly income of just over \$1,000. Costs exceeded sales for almost every income category for fishermen, suggesting that fishing is not a business for most, but that catch is simply sold to cover some of the cost.

While fish remain an important part of the local diet and an integral part of the people's history and culture, adaptation to and integration with a more westernized lifestyle appears to have changed people's dietary preferences on Saipan. Nearly half (45%) of the survey respondents reported eating "somewhat less fish" than they did a decade ago, although the majority still ate fish between one and three times a week. The majority also purchased their fish from a store or restaurant (40%), while 31% purchased fish from roadside vendors. Less common was acquiring fish from an extended relative/friend (13%) or their own catch (11%). Most of the fish consumed came from the U.S. mainland (41%), with other important sources coming from Saipan's coral reefs (31%), deepwater or pelagic fish caught off of Saipan (23%), or fish imported from other Pacific islands (e.g. Chuuk ; 10%).

Few other surveys have been conducted on fishing in the CNMI. A household survey conducted in 2012 found that 37% of households had at least one individual that self-identified as a fisherman (Kotowicz and Allen, 2015). Respondents from fishing households tended to be younger, possess lower education levels, and have a higher rate of unemployment than respondents from non-fishing households.

While proportionally few residents own a boat, more than 400 vessels were registered in the CNMI small boat fleet between 2010 and 2011 (Allen and Amesbury, 2012). More than 200 of the vessels were active and operating in CNMI waters at that time, and more than 100 of the vessels were involved in fishing activities. The active small boat fleet targeted tunas, other small pelagics (through trolling), and bottomfish; with the increase in gas prices, however, pelagic fishing has waned. When caught, these fish are marketed locally, given away to family and friends, or used for ceremonial purposes such as parties, culturally significant fiestas, and the patron saint's days for each village.

On Saipan, fisheries managers estimated the active small boat fleet at approximately 100 vessels from 2010 to 2011. Full-time commercial fishing is primarily conducted by ethnic nonindigenous minorities, namely Filipino residents that fish primarily as independent owners and/or operators and recent immigrants from the Federated States of Micronesia that fish for income. Chamorro and Carolinians, in contrast, primarily fish for recreational and subsistence purposes, typically only selling catch to recoup costs. A few vessel owner operators are considered "pescadors", a term used to refer to fishermen who provide fish for important community and familial events. Pescadors customarily provide 100-200 lbs. of reef fish for cooked dishes and pelagic species for kelaguen (a raw fish dish) used in community and family

celebrations. The system of seafood distribution underwent significant changes from approximately the turn of the century with the establishment of large seafood vendors. In contrast to individual fishermen/vendors who only market their own catch, large vendors typically own and operate a number of vessels and purchase catch from independent fishermen to sell. This trend has reportedly caused prices to decline. In addition, increases in fuel prices, low market prices for fish, and downturns in the domestic economy have led to a general decline in participation in this fishery since 2000 in numbers of fishermen, trips, landings, and seafood purchasers. The Saipan Fishermen's Association (SFA) is a nonprofit organization established in 1985 that holds annual fishing derbies and participated in community involvement projects, such as beach cleanup.

On Tinian, estimates of fleet size range from 15 to 20 vessels in 2010-2011. An estimated one to three fishermen fished consistently with the primary intent of selling fish. Respondents suggested that fishing and eating of fish was more habitual, rather than geared toward a particular event. Increasing fuel prices have reportedly led to the decline in number of active fishermen, and fishermen frequently have sold fish to cover fuel costs. Three restaurants and two stores in Tinian purchase fish, although fishermen have also resorted to selling house-to-house; the fishermen commonly have an established clientele. A few charter boats serve tourist clientele, however they do not land much catch, and even trolling trips serve more as photo opportunities. Charter boats are reportedly owned by non-local residents and target tourists by their country of origin (e.g. Japan, China, or Korea).

On Rota, fishermen target pelagic species when in season and bottomfish the rest of the year. Like on the other islands, the number and activity of fishermen have declined as a result of increased fuel prices. Family members will often make requests for certain kinds of fish, but they will also contribute money to purchase fuel for a fishing trip. In addition, fishermen will often check demand with local restaurants. In 2010 and 2011, fishermen sold catch to three separate restaurants or to neighbors and friends within the community (door-to-door or from a cooler on the roadside). One general store sold fish caught by a family member, who fished specifically to sell to that store. Rota holds a fishing derby in celebration of San Francisco, saint of the island.

A survey of the small boat fleet was also conducted in 2011 (Hospital and Beavers, 2014). Respondents were 41 years old and had been boat fishing for 15 years on average, providing evidence of a deep tradition of boat fishing in the CNMI. They were more likely to identify themselves as Chamorro relative to the general population of the CNMI, although they were equally likely to have been born in the CNMI. In general, fishermen were more educated then the general population and of comparable affluence. Pelagic trolling was the most popular gear type, followed by deepwater bottomfishing, shallow-water bottomfishing, and spearfishing. Most fishermen (71%) reported fishing adjacent to a Fish Aggregating Device (FAD) at some point in the past 12 months, and did so on nearly 22% of their fishing trips. A high degree of seasonal fishing effort was reported across most fishing fleet subgroups, though fishermen on Tinian and Rota were more likely to fish year-round than those on Saipan.

A majority of fishermen (74%) reported selling at least a portion of their catch in the past year. However, less than half of survey respondents (43%) indicated that they could always sell any fish that they wanted. A significant percentage of fish caught was consumed at home (28%) or given away to relatives, friends, or for cultural events (38%); this reflects the strong family and social connections associated with fishing in the CNMI. Approximately 29% of fish catch was sold, with the remaining catch either released (2%) or exchanged for goods and services (3%). Even fishermen who regularly sold fish still retained approximately 22% of their catch for home consumption, participation in traditional fish-sharing networks, and customary exchange. Additionally, 91% of survey respondents considered the bottomfish they catch to be an important source of food, and 93% considered the reef fish to be similarly important. These findings validate the significance of fishing in building and maintaining social networks, perpetuating fishing traditions, and providing fish to local communities as a source of food security.

Fishing in the CNMI is a social activity; only 3% of fishermen reported to fish alone, but 70% reported that their boat is used without them on occasion. In addition, the majority of fishermen (57%) agreed that, as a fisherman, they are respected by the greater community. Nearly a third of respondents were neutral (27%) regarding this sentiment, while some were hesitant to express an opinion or simply did not know (13%). The study found that very few fishers (3%) felt that they were not respected by the community.

The designation of the Marianas Trench Marine National Monument (the Monument) in 2009 has resulted in concerns about loss of fishing access (Richmond and Kotowicz, 2015; Kotowicz and Richmond, 2013; Kotowicz and Allen, 2015; and Kotowicz *et al.*, 2017). Despite long distance, high cost, and inconvenience, travel to the areas now protected by the Monument were rare but culturally significant events, and fishing was an essential component. While CNMI residents generally supported designation of the monument, awareness was low regarding specific impacts (Kotowicz *et al.*, 2017). In addition, fishing households showed higher awareness of the Monument, but were less likely to strongly support it.

Overall, the CNMI small boat fisheries are a mix of subsistence, cultural, recreational, and quasicommercial fishermen whose fishing behaviors provide evidence of the importance of fishing to the people of the CNMI. For nearly all fishery participants, the social and cultural motivations for fishing far outweigh economic prospects. Nearly all fishermen supplement their income with other jobs and are predominantly subsistence fishermen.

2.3.2.3 CNMI Bottomfish

Bottomfish was one of the gear types included in the 2011 Small Boat Survey (Hospital and Beavers, 2014). Overall fisher demographics and catch disposition were summarized in the previous section. Approximately 68% of respondents reported fishing for deepwater bottomfish and 65% for shallow-water bottomfish; additionally, 41% identified deepwater bottomfish as their primary target, and 49% identified shallow-water bottomfish as their primary target. Approximately 37% of trips included some form of bottomfishing. In general, deepwater bottomfishing appeared to be associated with more commercially-motivated fishermen. Fishers who primarily targeted bottomfish sold over half of their catch (52%) to friends, neighbors, and co-workers. Some self-identified primarily as subsistence fishers (58% selected this category) and recreational expense fishers (41%), although respondents spanned all response categories (full-time commercial, part-time commercial, recreational expense, purely recreational, subsistence, and cultural). Nearly half identified multiple motivations (49%).

2.3.2.3.1 Commercial Participation, Landings, Revenue, Prices

This section will describe trends in commercial pounds sold, revenues and prices, for the CNMI bottomfish fishery. Figure 11 presents the trends of commercial pounds sold and revenues of bottomfish fishery (BMUS only) during 2009-2018 and Figure 12 presents the trend of fish price of bottomfish sold for the same period. Supporting data for Figure 11 and Figure 12 are shown in Table 59. The table also includes and the percentage of pounds sold to the total pounds landed of the bottomfish fishery. Both nominal and adjusted values are included. As shown in Figure 11, the commercial landings of CNMI bottomfish were quite stable except 2015 and 2018. Fish price was in an increasing trend from up to 2015. Price dropped in 2016, but increased in the recent two years.

Please notice that the data for pounds caught and pounds sold are collected by two different data collection methods. The data of pounds sold were collected through "Commercial Sales Receipt Books" Program, while the data of pounds caught were collected through "Boat-based Creel Survey" and "Shore-based Creel Survey" (https://www.pifsc.noaa.gov/wpacfin/cnmi/Pages /cnmi_coll_3.php). Both data series are generated from an expansion algorithm built on a non-census data collection program respectively, and the survey coverage rates of two data collection methods may change independently in individual years. Therefore, the two time series may not move coherently to each other. For example, the low percentage of pounds sold compared to pounds caught could be due to the low coverage of dealer participations in the Commercial Receipt Books Program, or vice versa. In 2014, the ratio of pounds sold to pound caught of BMUS was particularly high, 229%, while the total pounds sold in 2014 were similar to the figures in the previous years and the estimated pounds caught was particularly low for 2014. It seems that the data quality for the pounds landed estimation for 2014 had some issues.

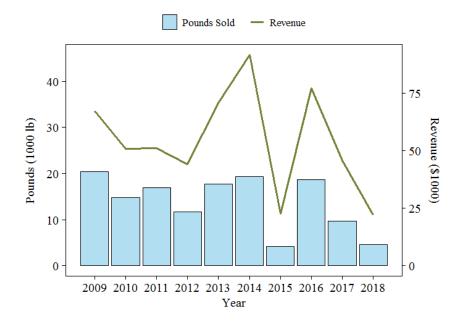


Figure 11. The commercial landings and revenues of BMUS, for the CNMI bottomfish fishery, 2009-2018 (Adjusted to 2018 dollars)

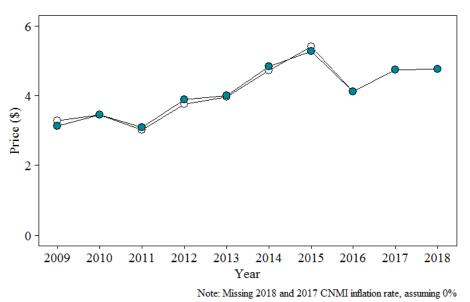


Figure 12. The prices of BMUS for the CNMI bottomfish fishery, 2009-2018

			20	07-2010				
				Estimated				
	Estimated	Estimated	Estimated	revenue	% of	Fish	Fish	
	pounds	pounds	revenue	(\$	pounds	price	price (\$	CPI
Year	caught (lb)	sold (lb)	(\$)	adjusted)	sold	(\$)	adjusted)	adjustor
2009	69,587	20,419	63,822	67,205	29%	3.13	3.29	1.05
2010	58,610	14,730	50,947	50,845	25%	3.46	3.45	1.00
2011	29,600	16,931	52,377	51,120	57%	3.09	3.02	0.98
2012	136,853	11,747	45,636	44,039	9%	3.89	3.75	0.97
2013	24,065	17,769	71,323	70,610	74%	4.01	3.97	0.99
2014	8,450	19,333	93,474	91,511	229%	4.83	4.73	0.98
2015	11,121	4,196	22,177	22,643	38%	5.28	5.4	1.02
2016	49,367	18,726	76,938	76,938	38%	4.11	4.11	1
2017	46,290	9,623	45,706	45,706	21%	4.75	4.75	1
2018	858	4,612	21,994	21,994	538%	4.77	4.77	1

Table 59. Commercial landings and revenue information of CNMI bottomfish fishery,2009-2018*

Data source: PIFSC WPacFIN.

2.3.2.3.2 Costs of Fishing

Since 2009, PIFSC economists have maintained a continuous economic data collection program for small boat fisheries in Saipan through collaboration with the PIFSC Western Pacific Fisheries Information Network (WPacFIN) (Chan and Pan 2019). The economic data collection program gathers fishing expenditure data for boat-based reef fish, bottomfish, and pelagic fishing trips on an ongoing basis. Data for fishing trip expenses include; gallons of fuel used, price per gallon of fuel, cost of ice used, cost of bait & chum used, cost of fishing gear lost, and the engine type of the boat. These economic data are collected from same subset of fishing trips as the boat-based creel survey carried out by the local fisheries management agencies and WPacFIN. These data are currently under PIFSC editorial review and future versions of this report will include a time-series of Saipan boat-based trip costs by target species and/or gear. Metadata for these data are available online (PIFSC Socioeconomics Program, 2016). Island-specific (Saipan, Tinian, and Rota) trip cost estimates for bottomfish fishing trips are available only for 2011 in Hospital and Beavers (2014). Other relevant cost information in Hospital and Beavers (2014) include estimates of annual fishing expenditures (fixed costs) and levels of investment in the fishery.

The trip cost data presented in this section were collected through the continuous economic data collection program on Saipan through collaboration with the PIFSC Western Pacific Fisheries Information Network (WPacFIN). Figure 13 shows the trend of average trip costs for CNMI bottomfish trips during 2009–2017 (adjusted to 2017 dollars), as 2018 data were not available due to limited observations for trip costs. Supporting data of Figure 13 are presented in Table 60. The trip costs seem to have substantial interannual variability. The average costs for a bottomfish trip was \$38 in 2017.

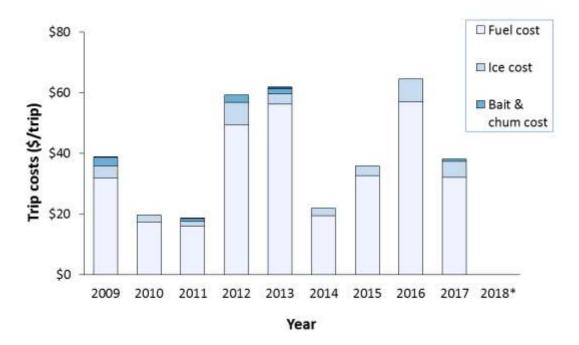


Figure 13. Average costs for CNMI bottomfish trips, 2009–2017 (adjusted to 2017 dollars)

	Total							Gear	Bait &	Bait &	
	trip	Total trip	Fuel	Fuel cost	Ice	Ice cost	Gear	losted	chum	chum cost	
	costs	costs (\$	cost	(\$	cost	(\$	losted	cost (\$	cost	(\$	CPI
Year	(\$)	adjusted)	(\$)	adjusted)	(\$)	adjusted)	cost (\$)	adjusted)	(\$)	adjusted)	adjustor
2009	37	39	30	32	4	4	0.13	0.1	3	3	1.053
2010	20	20	17	17	2	2	0.00	0.0	0	0	0.998
2011	19	19	16	16	2	2	0.10	0.1	1	1	0.976
2012	61	59	51	49	8	8	0.00	0.0	2	2	0.965
2013	63	62	57	56	3	3	0.59	0.6	2	2	0.990
2014	22	22	20	19	3	3	0.00	0.0	0	0	0.979
2015	35	36	32	33	3	3	0.00	0.0	0	0	1.021
2016	65	65	57	57	8	8	0.00	0.0	0	0	1.000
2017	38	38	32	32	5	5	0.00	0.0	1	1	1.000

Table 60. Average trip costs for CNMI bottomfish trips, 2009–2017*, adjusted to 2017 dollars

*No cost update for 2018 due to no data collected in 2018.

Data source: PIFSC Continuous Cost Data Collection Program (Chan and Pan 2019).

2.3.2.4 CNMI Reef Fish

Coral reef fish were also included in the 2011 small boat survey (Hospital and Beavers, 2014). Unsurprisingly, fishermen targeting reef fish, on average, were slightly younger than others, likely due to the physical requirements of reef fishing. Approximately 54% of respondents reported atulai fishing, 50% reported spearfishing, and 12% reported net fishing. Atulai was identified as the primary choice by 46% of fishermen, while 38% indicated spearfishing was preferable, and 14% net fishing as their primary gear type. Fishers who primarily targeted reef fish sold almost half of their catch (45%) to friends, neighbors, and co-workers. They self-identified primarily as subsistence fishers (44%) and cultural fishers (38%), although respondents spanned all response categories (full-time commercial, part-time commercial, recreational expense, purely recreational, subsistence, and cultural). Over one-third identified multiple motivations (38%).

In addition to playing an important role in subsistence and cultural fishing, coral reef ecosystems of Saipan only have been estimated at a value of \$61 million, 70% of which is accounted for by tourism (Grace McCaskey, 2014).

2.3.2.4.1 Commercial Participation, Landings, Revenue, Prices

This section will describe trends in commercial pounds sold, revenues and prices, for the CNMI coral reef fish fishery. Figure 14 presents the trends of commercial pounds sold and revenues of coral reef fish fishery during 2009-2018 and Figure 15 presents the trend of fish price of coral reef fish sold during 2009-2018. As showing in Figure 14, the coral reef fish fishery (pounds sold and revenue) in CNMI in a declining trend, except in 2016. Fish price was pretty flat around \$2.76 in nominal value (Figure 15). Supporting data for Figure 14 and Figure 15 are shown in Table 61.

Table 61 also includes % of pounds sold to the total pounds caught of the coral reef fish fishery. Both nominal and adjusted values are included in the table. Compared to the pounds sold to pounds caught, it seems that the reported pounds sold were higher than pounds caught in most of the years, in average across years, pounds sold were 40% greater than pounds landed. Reef fish price was steady in general during the period, but slightly decreased in recent two years.

Please notice that the data for pounds caught and pounds sold are collected by two different data collection methods. The data of pounds sold were collected through "Commercial Sales Receipt Books" Program, while the data of pounds caught were collected through "Boat-based Creel Survey" and "Shore-based Creel Survey" (<u>https://www.pifsc.noaa.gov/wpacfin/cnmi/</u> <u>Pages/cnmi_coll_3.php</u>). Both data series are generated from an expansion algorithm built on a non-census data collection program respectively, and the survey coverage rates of two data collection methods may change independently in individual years. Therefore, the two time series may not move coherently to each other. For example, the low percentage of pounds sold compared to pounds caught could be due to the low coverage of dealer participations in the Commercial Receipt Books Program, or vice versa.



Figure 14. The pounds sold and revenues for the CNMI reef fish fishery, 2009-2018 (adjusted to 2018 dollars)

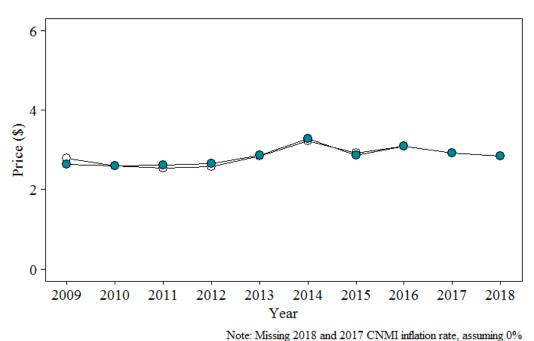
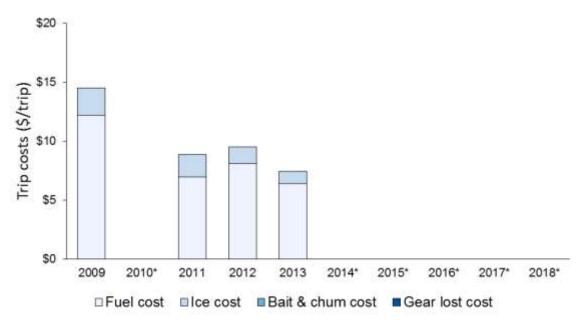


Figure 15. The fish prices of CREMUS for the CNMI reef fishery, 2009-2018

Table 61. Commercial landings and revenue information of CNMI coral reef fishery, 2009-2018

				Estimated				
	Estimated	Estimated	Estimated	revenue	% of		Fish	
	pounds	pounds	revenue	(\$	pounds	Fish	price (\$	CPI
Year	caught (lb)	sold (lb)	(\$)	adjusted)	sold	price (\$)	adjusted)	adjustor
2009	107,543	125,403	330,957	348,498	1.166073	2.64	2.78	1.05
2010	72929	89566	233020	232554	1.228126	2.6	2.6	1.00
2011	79269	95080	248352	242392	1.19946	2.61	2.55	0.98
2012	68476	68160	181411	175062	0.995385	2.66	2.57	0.97
2013	94541	77117	220965	218755	0.815699	2.87	2.84	0.99
2014	24022	74988	246724	241543	3.121638	3.29	3.22	0.98
2015	30882	42343	121056	123598	1.371122	2.86	2.92	1.02
2016	58525	75949	235358	235358	1.297719	3.1	3.1	1
2017	22735	37573	109610	109610	1.65265	2.92	2.92	1
2018	26126	29006	82547	82547	1.110235	2.85	2.85	1


Data source: PIFSC WPacFIN

2.3.2.4.2 Costs of Fishing

Since 2009, the PIFSC Socioeconomics Program has maintained a continuous economic data collection program small boat fisheries in Saipan through collaboration with the PIFSC Western Pacific Fisheries Information Network (WPacFIN) (Chan and Pan 2019). The economic data

collection program gathers fishing expenditure data for boat-based reef fish, bottomfish, and pelagic fishing trips on an ongoing basis. Data for fishing trip expenses include: gallons of fuel used, price per gallon of fuel, cost of ice used, cost of bait and chum used, cost of fishing gear lost, and the engine type of the boat. These economic data are collected from same subset of fishing trips as the boat-based creel survey carried out by the local fisheries management agencies and WPacFIN. These data are currently under PIFSC editorial review and future versions of this report will include time-series of Saipan boat-based trip costs by target species and/or gear. Meta-data for these time series are available online (PIFSC Socioeconomics Program, 2016). Island-specific trip cost estimates for reef fishing trips are available only in 2011 from Hospital and Beavers (2014). Other relevant cost information from Hospital and Beavers (2014) includes estimates of annual fishing expenditures (fixed costs) and levels of investment in the fishery.

The trip cost data presented in this section were collected through the continuous economic data collection program in collaboration with the PIFSC Western Pacific Fisheries Information Network (WPacFIN). Figure 16 shows the trend of average trip costs for CNMI coral reef fish fishing trips during 2009–2017 (adjusted to 2017 dollars), as the 2018 cost data were not available due to limited observations. Only four years are available with data during the 10 year period due to limited observations in fishing cost data collections. Supporting data for Figure 16 are listed in Table 62.

^{*}Trip cost data are not presented since the observations for those years were less than 3.

Figure 16. Average costs for CNMI spearfishing trips, 2009–2017 (adjusted to 2017 dollars)

	Total							Gear		Bait &	
	trip	Total trip	Fuel	Fuel cost	Ice	Ice cost	Gear	losted	Bait &	chum cost	
	costs	costs (\$)	cost	(\$)	cost	(\$)	losted	cost (\$)	chum	(\$)	CPI
Year	(\$)	(adjusted)	(\$)	(adjusted)	(\$)	(adjusted)	cost (\$)	(adjusted)	cost (\$)	(adjusted)	adjustor
2009	14	15	12	12	2	2	0	0	0	0	1.053
2010	0	0	-	-	-	-	-	-	-	-	0.998
2011	9	9	7	7	2	2	0	0	0	0	0.976
2012*	10	9	8	8	1	1	0	0	0	0	0.965
2013	8	7	6	6	1	1	0	0	0	0	0.990
2014	-	-									0.979
2015	-	-									1.021
2016	-	-									1
2017	-	-									1
2018	-	-									1

 Table 62. Average costs for CNMI bottomfish trips, 2009–2017 (adjusted to 2017 dollars)

*Trip cost data are not presented since the observations for those years were less than 3. ¹Data source: PIFSC Continuous Cost Data Collection Program (Chan and Pan 2019).

2.3.2.5 CNMI Crustaceans

There are currently no socioeconomics data specific to the crustacean fishery. Future reports will include new information as resources allow.

2.3.2.6 CNMI Precious Corals

There are currently no socioeconomic data specific to this fishery. Future reports will include new information as resources allow.

2.3.3 Guam

2.3.3.1 Introduction

An overview of Guam's history, culture, geography, and relationship with the U.S. is described in the Fishery Ecosystem Plan for the Mariana Archipelago (Western Pacific Regional Fishery Management Council, 2016b). Guam is the largest and southernmost island of the Mariana Archipelago, and is also the largest and most heavily populated island in Micronesia. Over the past decade, a number of studies have synthesized more details about the role of fishing and marine resources for residents of Guam, as well as information about the people who engage in the fisheries and/or utilize fishery resources.

The ancestors of the indigenous Chamorro first arrived in the Marianas around 3,500 years ago, and were expert fishermen and seafarers, relying on seafood as their principal source of protein (Allen and Bartram, 2008; Grace McCaskey, 2014; Hospital and Beavers, 2012). They fished on the high seas in large sailing canoes (proas) and used numerous methods to catch reef and bottomfish from boats. Similar to other archipelagos in the Western Pacific, fish and marine resources have played a central role in shaping the social, cultural, and economic fabric of Guam that continues today. Chamorro fished for both reef and pelagic species, collected mollusks and other invertebrates, and caught sea turtles.

The occupation of Guam by foreign nations dramatically changed the island's ecosystems, reshaped communities, and disrupted fishing traditions. In the 17th and 18th centuries, Spanish colonizers destroyed the Chamorro' seagoing canoes, suppressed offshore fishing practices, and relocated populations from their traditional home. Following the Spanish-American War in 1898, the U.S. Navy took control of Guam until it was occupied by Japan from 1941-1944. Guam became a U.S. territory in 1950, and the U.S. military is currently in the process of building up an even greater presence on the island. Throughout this time, fishing has remained an important activity, although by the time Guam became and American territory, the indigenous inhabitants had lost many of their seafaring skills, fishing skills, and even the native names of many of the offshore species. Later immigrants to the islands from East and Southeast Asia also possessed a strong fishing tradition. In 2000, 37% of Guam's population that identified as a single ethnicity were Chamorro, followed by 32% Asian (about 80% of whom were Filipino), 17% other Pacific Islander, 7% white, and 1% black. Despite rapid socioeconomic change, households still reflect the traditional pattern of extended families with multigenerational clustering of relatives, especially in Guam's southern villages. Social occasions such as neighborhood parties, wedding and baptismal parties, wakes and funerals, and especially village fiestas that follow the religious celebrations of village patron saints all require large quantities of fish and other traditional foods, reflecting the role of fish in maintaining social ties and cultural identities. Sometimes fish are also sold to earn money to buy gifts for friends and relatives on important Catholic religious occasions such as novenas, births and christenings, and other holidays.

Since the late 1970s, Guam's most important role in commercial fisheries activity has been as a major regional fish transshipment center and resupply base for domestic and foreign tuna fishing fleets. Services provided include fueling, provisioning, unloading, air and sea transshipment, net and vessel repair, crew repatriation, medical care, and warehousing. Among Guam's advantages as a home port are: well-developed and highly efficient port facilities in Apra Harbor, an availability of relatively low-cost vessel fuel, a well-established marine supply/repair industry, and recreational amenities for crew shore leave. In addition, the territory is exempt from the Nicholson Act, which prohibits foreign ships from landing their catches in U.S. ports. Initially, the majority of vessels calling in Apra Harbor to discharge frozen tuna for transshipment were Japanese purse seine boats and carrier vessels. In the late 1980s, Guam became an important port for Japanese and Taiwanese longline fleets, but port calls have steadily declined and the transshipment volume has declined accordingly. By the early 1990s, an air transshipment operation had also been established on Guam. Fresh tuna was flown into Guam from the Federated States of Micronesia and elsewhere on air cargo planes and out of Guam to the Japanese market on wide-body passenger planes. Further, vessels from Japan and Taiwan also landed directly into Guam, where their fish were packed and transshipped by air to Japan. A second air transshipment operation began in the mid-1990s that was transporting fish to Europe that did not meet Japanese sashimi market standards, but this has since ceased. Moreover, the entire transshipment industry has contracted markedly with only a few operators still making transshipments to Japan. Annual volumes of tuna transshipped of between 2007 and 2011 averaged about 3,400 mt, with a 2012 estimate of 2,222 mt, compared to over 12,000 mt at the peak of operations between 1995 and 2001. As early as 2006, it was noted that the Port of Guam had lost much of its competitive advantage compared to alternative transshipment locations in the western Pacific and elsewhere, a trend that may not be reversible.

Otherwise, commercial fisheries have a relatively minor contribution to Guam's economy; the social and cultural importance of fisheries in Guam dwarfs their commercial value. Nearly all Guam domestic fishermen hold jobs outside the fishery, with fishing typically supplementing family subsistence. High value is placed on sharing one's fish catch with relatives and friends, and this social obligation extends to part-time and full-time commercial fishermen alike. A survey of Guam households in 2005 found that nearly one-quarter (24%) of fish consumed were caught by the respondent or an immediate family member, and an additional 14% were caught by a friend or extended family member (Allen and Bartram, 2008). However, a little more than half (51%) of the fish consumed were purchased at a store or restaurant, and 9% were purchased at a flea market or from a roadside stand. The same study found that annual seafood consumption in Guam is estimated to be about 60 lbs. per capita, with approximately 43% imported from the U.S.

The westernization of Guam, particularly since World War II, has not only resulted in a transition from a subsistence to wage-based economy, but has also contributed to dramatic changes in eating patterns, including lower seafood consumption. Indeed, recent years have seen steady declines in the market demand for fresh local fish across Guam (Hospital and Beavers, 2012). While some families continue to supplement their diet by fishing and farming, no existing communities are completely dependent on local fishing as a source of food. A household survey conducted in 2016 found that only 29% of respondents participate in fishing (National Coral Reef Monitoring Program, 2016a).

Allen and Bartram (2008) reviewed the history of shoreline and inshore fishing on Guam. They noted that the number of people engaged in shore fishing in the 1970s was surprisingly large, given that about 90% of the food consumed on the island was imported. A study conducted in 1975 found that 65% of households reported some participation in fishing, which was presumably shore-fishing as a result of the low level of boat ownership at the time. Creel surveys conducted by the Guam DAWR indicated that CPUE in Guam's shore-based fisheries for reef fish (pole, spear, cast net, surround net, and gill net) declined sharply in the 1980s and had not recovered by 2008. Offshore (boat-based) catches of reef-associated fish were relatively constant between1992 and 2008, whereas inshore catches that accounted for the majority of the reef fish harvest during the 1990s comprised a minority of the total harvest by 2008. Much of the traditional harvest targets seasonal runs of juvenile rabbitfish, goatfish, bigeye scad (atulai, Selar crumenophthalmus), and jacks (i'e, family Carangidae). A study in 2007 estimated that Guam's coral reef resources were valued at close to \$127 million annually, primarily driven by the island's important tourism industry (Grace McCaskey, 2014). Nearly 1.2 million people visited Guam in 2010, many of them attracted by reef-related activities, such as snorkeling and scuba diving.

As recently as the early 1970s, relatively few people from Guam fished offshore because boats and deep-sea fishing equipment were prohibitively expensive (Allen and Bartram, 2008). During the economic boom from the late-1980s through most of the 1990s, Guam developed a small boat fishery that conducted trolling and bottomfishing mostly within 30 miles of shore.

The Guam Fishermen's Cooperative Association (GFCA) plays an important role in preserving important fishing traditions. It began operations in 1976 and was incorporated in 1977. In 2006, its membership included 164 full- and part-time fishermen from every district on Guam, and it

processed and marketed approximately 80% of the local commercial catch. In addition, it plays a role in fisheries data collection, marine education and training, and fisheries conservation and management. The GFCA strives to provide benefits not just to fishermen but to residents throughout Guam, benefitting the broader Guam community. It utilizes a Hazard Analysis and Critical Control Point (HACCP) system to ensure safe seafood, and tests fish for potential toxins or whenever requested by the Guam Department of Health and Sanitation. It has also become a focal point for community activities, such as the Guam Marianas International Fishing Derby, cooking competitions, the Guam Fishermen's Festival, dissemination of educational materials on marine resources, vessel safety, seafood preparation, public meetings on resource management issues, and communications via radio base to relay information and coordinate rescues. It also has adopted a policy of purchasing local origin products that benefits 40 small businesses on Guam, regularly donates seafood for village functions and charitable activities, and provides assistance to victims of periodic typhoons with emergency supplies of ice and fuel. In addition, the GFCA has become a voice for Guam fishermen in the policy arena to ensure that concerns of fishermen are incorporated into relevant issues, including the military buildup and loss of fishing grounds due to establishment of Marine Preserve Areas.

Fishing in Guam continues to be important not only in contributing to the subsistence needs of the Chamorro and other residents, but also in preserving their histories and identities. Knowledge of how fish are distributed and consumed locally is crucial to understanding the social and cultural significance of fishing on Guam.

2.3.3.2 People who Fish

Few studies have been conducted on fishing in Guam in general. A household survey conducted in 2012 found that 35% of respondents said that they or someone else in their household was a fisherman (Kotowicz and Allen, 2015). Respondents from fishing households tended to have lower education levels and have a higher rate of unemployment than respondents from non-fishing households.

As described in Allen and Bartram (2008), in 1999, a detailed study of the inshore fishing behaviors and spatial patterns was conducted for the three largest resident fishing cultures on Guam: Chamorro, Micronesian, and Filipino. At that time, Chamorro comprised about 75% of the fishing parties encountered, while Micronesians constituted about 17% and Filipinos about 7%. A number of contemporary reef fishing methods on Guam were observed, including gleaning, hand line, rod and reel, talaya (cast net), tekken (gill net), chenchulu (surround net), and spearfishing. Explicit rules governing permanent marine ownership were not observed, but Chamorro fishermen maintained a strong identification with village and municipal space. This village relationship included the reef during the early part of the 20th century but that has since largely disappeared. Instead, a system of "pliant tenure" (a vestige of traditional marine tenure) was recognized; while any reef area is publicly accessible, fishermen act according to a system of temporary ownership or pliant tenure of reef area. These rules were understood and incorporated by Chamorro and immigrant fishers alike. Respondents voiced concern about the loss of fishing grounds through designation of marine reserves and tourist watercraft activities. They viewed reduced coastal access as threatening the perpetuation of cultural identity and practice by reducing ability to teach and practice traditions such as communal harvests and distribution of the catches, which reinforce family cohesion and communal identity. These

practices have been further jeopardized by the build-up of U.S. military personnel and families in recent years.

In the mid-1980s Guam fisheries were characterized as including (1) a small number of true commercial fishermen, (2) subsistence/recreational fishermen who regularly sell part of their catch, (3) a large number of subsistence fishermen who rarely sell any of their catch, and (4) a substantial number of recreational fishermen. Approximately 60% of catch was non-commercial, with fish sales primarily used to generate revenue to pay for fuel costs. A similar pattern continues in recent years.

In 2011, a survey was conducted of the small boat fleet, which included questions about trolling, bottomfishing, and reef fishing. On average, fishermen responding to the survey were 44 years old and reported to have been boat fishing for an average of 20 years. Respondents were also more educated and more affluent than the general population. The majority of respondents described themselves as Chamorro (72%), followed by white (23%) with relatively small proportions of Filipinos (6%), Micronesians (6%), other ethnicities (5%), and Carolinians (1%) represented. There was considerable evidence of co-ownership and sharing of fishing vessels. In addition, fishermen reported the use of multiple gear types, with pelagic trolling as the most popular gear type followed by shallow-water bottomfish fishing and deepwater bottomfish fishing. Almost all (96%) fishermen reported fishing trips. Fishing for bottomfish and reef fish was highly seasonal compared to pelagics. Whereas over half of the survey respondents (54%) fished all year for pelagics, only 16% fished year-round for bottomfish and reef fish.

Approximately 70% of fishermen reported selling at least a portion of their catch, and 82% could always sell all the fish that they wanted to sell. However, nearly 30% reported that they had not sold any fish in the past year, and nobody reported selling all the fish they caught. Instead, cost recovery was cited as the primary motivation for the sale of fish, with fish sales contributing very little to personal income for the majority of respondents (59%). In fact, 64% of fishermen reporting the sale of fish earned fishing revenues of less than \$1,000, which would not cover overall trip expenditures for a year. Sale of pelagic fish contributes to nearly 67% of fishing income, with 20% from bottomfish revenues and the rest from reef fish.

While respondents sold approximately 24% of their total catch, 29% was consumed at home, while 42% was given away. The remaining catch was either released (2%) or exchanged for goods and services (3%). This diversity of catch disposition extends to fishermen who regularly sell fish, as they still retain approximately 30% of their catch for home consumption and participation in traditional fish-sharing networks and customary exchange. Additionally, 78% consider the pelagic fish they catch to be an important source of food, 79% for bottomfish, and 85% for reef fish. These findings validate the importance of fishing in terms of building and maintaining social and community networks, perpetuating fishing traditions, and providing food security to local communities.

Like with CNMI, fishing on Guam is a social activity. Only 7% of fishermen reported fishing alone, and 45% reported that their boat is used without them on occasion. In addition, 61% reported to be a member of a fishing club, association, or group. The majority of fishermen

(60%) also agreed that as a fisherman, they are respected by the Guam community. Very few felt that they were not respected by the community.

There was also an open-ended portion of the survey that asked for comments. The two most prevalent themes were that of a rising population and rising fuel costs. Many believed that the expanding population would increase the demand for fish and number of fishermen, yet at the same time, others noted that fuel costs and economic considerations could restrict fishing. In addition, there was concern about the designation of Marianas Trench Marine National Monument, especially since respondents felt that the Marine Preserve Areas established in 1997 had already displaced them from their traditional fishing grounds. Military exercises also affected fishing trips. Other studies have also documented concerns about fishing access related to the designation of the Monument (Richmond and Kotowicz, 2015; Kotowicz and Richmond 2013; and Kotowicz and Allen, 2015). Despite long distance, high cost, and inconvenience, travel to the areas now protected by the Monument were rare but culturally significant events of which fishing was an essential component.

Similar to CNMI, Guam's small boat fisheries are a complex mix of subsistence, cultural, recreational, and quasi-commercial fishermen whose fishing behaviors provide evidence of the importance of fishing to the island of the Guam. For nearly all fishery participants, the social and cultural motivations for fishing far outweigh any economic prospects. Nearly all fishermen supplement their income with other jobs and are predominantly subsistence fishermen, selling occasionally to recover trip expenses.

2.3.3.3 Guam Bottomfish

Allen and Bartram (2008) reviewed the history of the bottomfish fishery on Guam, which consists of both shallow- and deep water aspects. They noted that during the 1980s and 1990s, bottomfish fishing was a highly seasonal, small-scale, commercial, subsistence, and recreational fishery. The majority of the participants operated vessels less than 25 ft. long and targeted the shallow-water bottomfish complex because of the lower expenditure and relative ease of fishing elose to shore. The commercially-oriented vessels tended to be longer than 25 ft., concentrating effort on the deepwater bottomfish complex. Both deepwater and shallow-water bottomfish are also important target species of the charter fishing fleet, and charter trips accounted for about 15–20% of all Guam bottomfishing trips from 1995 through 2000. In 1998, the charter fleet attracted approximately 3% of visitors to Guam and consisted of a dozen core boats.

Bottomfish was one of the gear types included in the 2011 small boat survey (Hospital and Beavers, 2014). Overall fisher demographics and catch disposition were summarized in the previous section. Approximately 57% of respondents reported fishing for deepwater bottomfish and 59% for shallow-water bottomfish, with 52% identifying deepwater bottomfish as their primary target and 49% identifying shallow-water bottomfish as their primary target dottomfish allocated their catch mainly through the Guam Fisherman's Cooperative Association (55%), or to friends, neighbors, and co-workers (41%). For the most part, they self-identified as recreational expense fishers (40%), cultural fishers (35%), subsistence fishers (35%), purely recreational fishers (30%), though respondents spanned all response categories except full-time commercial (i.e., part-time commercial, recreational expense, purely recreational, subsistence, and cultural). Over half of the respondents identified multiple motivations (54%).

2.3.3.3.1 Commercial Participation, Landings, Revenue, Prices

This section describes trends in commercial pounds sold, revenues and prices, for the Guam bottomfish fishery. Figure 17 presents the trends of commercial pounds sold and revenues of bottomfish fishery during 2009-2018 and Figure 18 presents the trend of fish price of bottomfish sold during 2009-2018 (for BMUS only). Supporting data for Figure 17 and Figure 18 are shown in Table 63. Table 63 also includes the percentage of pounds sold to the total pounds caught of the bottomfish fishery. Both nominal and adjusted values are included in the table.

As showing in Figure 17, the bottomfish fishery (commercial landings and revenue) in Guam was in a declining trend from 2009 to 2016 and it went up in 2017. The commercial landings of 2018 were lower than 2017, but higher than that in the period of 2013-2015. Fish price was pretty steady (Figure 18). Compared to total pounds landed, the commercial landings of BMUS were only small portion. On an average of the recent ten years (2009-2018), the pounds sold were only 15% of total pounds caught. In 2018, the percentage pounds sold was 11% of total pounds caught. Bottomfish price were steady in general, but variations showed in the recent three years.

Please notice that the data for pounds caught and pounds sold are collected by two different data collection methods. The data of pounds sold were collected through Commercial Sales Receipt Books Program, while the data of pounds caught were collected through Boat-based Creel Survey and Shore-based Creel Survey (<u>https://www.pifsc.noaa.gov/wpacfin/guam/dawr/</u><u>Pages/gdawr_coll_3.php</u>). Both data series are generated from an expansion algorithm built on a non-census data collection program respectively, and the survey coverage rates of two data collection methods may change independently in individual years. Therefore, the two time series may not move coherently to each other. For example, the low percentage of pounds sold compared to pounds caught could be due to the low coverage of dealer participations in the Commercial Receipt Books Program, or vice versa.

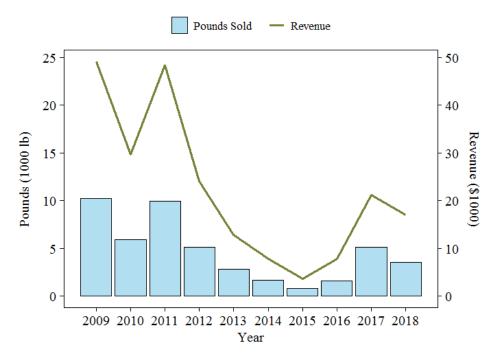


Figure 17. The pounds sold and revenues for the Guam bottomfish fishery, 2009-2018 (adjusted to 2018 dollars)

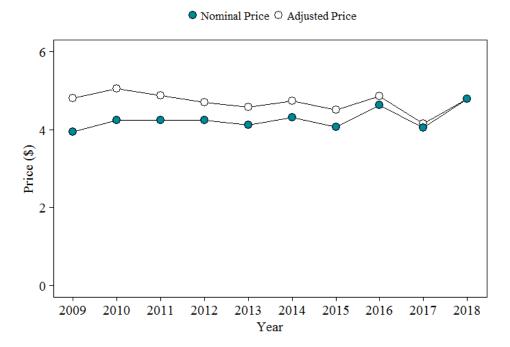
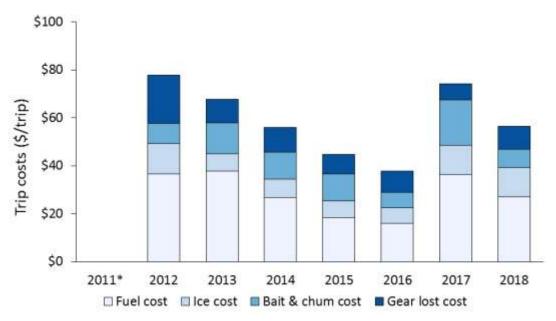


Figure 18. The prices of BMUS for the Guam bottomfish fishery, 2009-2018

				Estimated				
	Estimated	Estimated	Estimated	revenue	% of	Fish	Fish	
	pounds	pounds	revenue	(\$	pounds	price	price (\$	CPI
Year	caught (lb)	sold (lb)	(\$)	adjusted)	sold	(\$)	adjusted)	adjustor
2009	39,248	10,232	40,284	49,146	26%	3.94	4.80	1.22
2010	27,044	5,890	25,008	29,760	22%	4.25	5.05	1.19
2011	59,023	9,941	42,153	48,476	17%	4.24	4.88	1.15
2012	22,182	5,133	21,740	24,131	23%	4.24	4.70	1.11
2013	30,869	2,809	11,575	12,848	9%	4.12	4.57	1.11
2014	24,865	1,650	7,112	7,823	7%	4.31	4.74	1.10
2015	13,837	804	3,263	3,622	6%	4.06	4.50	1.11
2016	26,893	1,620	7,485	7,859	6%	4.62	4.85	1.05
2017	19,143	5,094	20,557	21,174	27%	4.04	4.16	1.03
2018	32,751	3,557	17,022	17,022	11%	4.79	4.79	1


Table 63. Commercial landings, revenue, and price information of Guam bottomfishfishery, 2009-2018

Data source: PIFSC Continuous Cost Data Collection Program (Chan and Pan 2019).

2.3.3.3.2 Costs of Fishing

Since 2011, PIFSC economists have maintained a continuous economic data collection program for small boat fishing on Guam through collaboration with the PIFSC Western Pacific Fisheries Information Network (WPacFIN) (Chan and Pan 2019). The economic data collection gathers fishing expenditure data for boat-based reef fish, bottomfish, and pelagic fishing trips on an ongoing basis. Data for fishing trip expenses include; gallons of fuel used, price per gallon of fuel, cost of ice used, cost of bait & chum used, cost of fishing gear lost, and the engine type of the boat. These economic data are collected from same subset of fishing trips as the boat-based creel survey carried out by the local fisheries management agencies and WPacFIN. Metadata for these data are available online (PIFSC Socioeconomics Program, 2016). Guam trip cost estimates from 2011 for bottomfish fishing trips and other relevant cost information (such as estimates of annual fixed costs) are available in a one-time survey (Hospital and Beavers, 2012).

The time series of trip costs of Guam bottomfish fishing presented in Figure 19 are based on a continuous economic data collection program maintained by the PIFSC Socioeconomics Program through collaboration with the PIFSC Western Pacific Fisheries Information Network (WPacFIN). The fishing costs of bottomfish were in a declining trend from 2012-2016, and then went up substantially in 2017. The trip costs of 2018 was lower than 2017, but it was still high compared to the most of the previous years. Supporting data for are presented in Table 64.

* The number of boats (respondents) was fewer than 3; due to confidentiality concerns, responses are not presented.

Figure 19. Average trip costs for Guam bottomfish fishing trips from 2009–2018 (adjusted to 2018 dollars)

	Total							Gear		Bait &	
	trip	Total trip	Fuel	Fuel cost	Ice	Ice cost	Gear	losted	Bait &	chum cost	
	costs	costs (\$)	cost	(\$)	cost	(\$)	losted	cost (\$)	chum	(\$)	CPI
Year	(\$)	(adjusted)	(\$)	(adjusted)	(\$)	(adjusted)	cost (\$)	(adjusted)	cost (\$)	(adjusted)	adjustor
2011*	-	-	-	-	-	-	-	-	-	-	1.149
2012	70	78	33	37	11	13	18	20	8	8	1.114
2013	61	68	34	38	6	7	9	10	12	13	1.114
2014	51	56	24	27	7	8	9	10	10	11	1.105
2015	40	45	17	18	6	7	7	8	10	11	1.115
2016	36	38	15	16	6	7	8	9	6	6	1.052
2017	72	74	35	36	12	12	7	7	18	19	1.026
2018	57	57	27	27	12	12	10	10	8	8	1

 Table 64. Average trip costs for Guam bottomfish fishing trips from 2009–2018

* The number of boats (respondents) was fewer than 3; due to confidentiality concerns, responses are not presented. Data source: PIFSC Continuous Cost Data Collection Program (Chan and Pan 2019).

2.3.3.4 Guam Reef Fish

Coral reef fish were also included in the 2011 small boat survey (Hospital and Beavers, 2014). Approximately 33% of respondents reported atulai fishing, 32% spearfishing, and 8% net fishing. Atulai was identified as the primary target by 31%, 20% indicated spearfishing, and 4% indicated net fishing as their primary gear type. Fishers who primarily targeted reef fish sold their catch mainly through the Guam Fisherman's Cooperative Association (37%) or to friends, neighbors, and co-workers (51%). For the most part, respondents self-identified as subsistence fishers (46%), purely recreational fishers (46%), cultural fishers (38.5%), and recreational

expense fishers (31%) although respondents spanned all response categories except full-time commercial (i.e., part-time commercial, recreational expense, purely recreational, subsistence, and cultural). Over half of respondents identified multiple motivations (54%).

2.3.3.4.1 Commercial Participation, Landings, Revenue, Prices

This section describes trends in commercial pounds sold, revenues and prices, for the Guam coral reef fish fishery. Figure 20 presents the trends of commercial landings (pounds sold) and revenues of coral reef fish fishery during 2009-2018 and Figure 21 presents the trend of fish price of coral reef fish sold during 2009-2018. Supporting data for Figure 20 and Figure 21 are shown in Table 65. Table 65 also includes the percentage of pounds sold to the total pounds caught of the CREMUS. Both nominal and adjusted values are also included in the table.

As showing in Figure 20, the coral reef fish fishery (pounds sold) and revenue in Guam was in a declining trend except a soar in both commercial landings and revenue appeared in 2017. The pounds sold in 2018 were lower 2017. On an average of the ten years period (2009-2018), the total commercial landings were 61% of total pounds caught. In 2018, the percentage pounds sold was 55% of total pounds landed. Fish price had been steady up to 2015, but it was lower than the average in recent three years (2016, 2017, and 2018), as Figure 21 shows.

Please notice that the data for pounds caught and pounds sold are collected by two different data collection methods. The data of pounds sold were collected through Commercial Sales Receipt Books Program, while the data of pounds caught were collected through Boat-based Creel Survey and Shore-based Creel Survey (<u>https://www.pifsc.noaa.gov/wpacfin/guam/dawr/</u><u>Pages/gdawr_coll_3.php</u>). Both data series are generated from an expansion algorithm built on a non-census data collection program respectively, and the survey coverage rates of two data collection methods may change independently in individual years. Therefore, the two time series may not move coherently to each other. For example, the low percentage of pounds sold compared to pounds caught could be due to the low coverage of dealer participations in the Commercial Receipt Books Program, or vice versa.

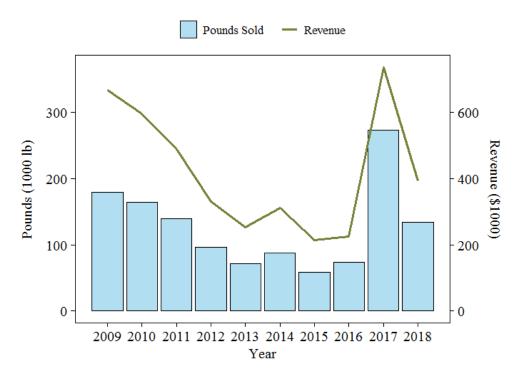


Figure 20. The commercial landings and revenues, for the Guam reef fish fishery, 2009-2018

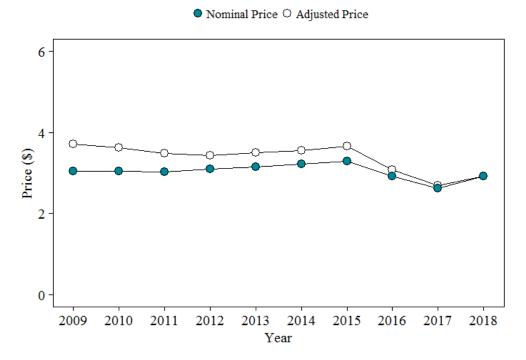


Figure 21. The prices of CREMUS for the Guam reef fish fishery, 2009-2018

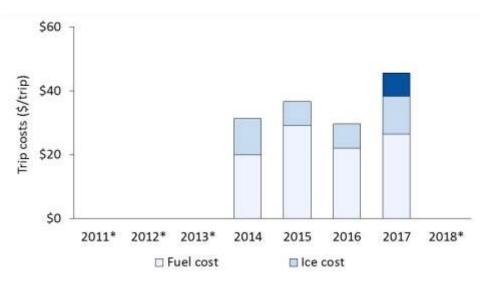

				Estimated				
	Estimated	Estimated	Estimated	revenue	% of	Fish	Fish	
	pounds	pounds	revenue	(\$	pounds	price	price (\$	CPI
Year	caught (lb)	sold (lb)	(\$)	adjusted)	sold	(\$)	adjusted)	adjustor
2009	538,372	179,262	547,105	667,468	33%	3.05	3.72	1.22
2010	156,573	164,367	501,950	597,320	105%	3.05	3.63	1.19
2011	338,417	140,075	424,802	488,522	41%	3.03	3.49	1.15
2012	237,127	96,349	297,952	330,727	41%	3.09	3.43	1.11
2013	268,885	72,008	227,451	252,471	27%	3.16	3.51	1.11
2014	190,951	87,801	283,255	311,580	46%	3.23	3.55	1.10
2015	203,241	58,762	193,723	215,033	29%	3.30	3.66	1.11
2016	154,873	73,252	214,653	225,386	47%	2.93	3.08	1.05
2017	147,475	273,372	715,623	737,092	185%	2.62	2.70	1.03
2018	243,108	133,941	392,548	392,548	55%	2.93	2.93	1

Table 65. Commercial landings and revenue information of Guam coral reef fish fishery,2009-2018

Data source: PIFSC WPacFIN

2.3.3.4.2 Costs of Fishing

The trip costs presented in Figure 22 are based on a continuous economic data collection program for small boat fisheries in Guam maintained by the PIFSC economists through collaboration with the PIFSC Western Pacific Fisheries Information Network (WPacFIN) (Chan and Pan 2019). Due to limited observations, only four years' data were presented in the charts. The fishing costs of coral reef fish fishing trips were in an increasing trend since 2014 to 2017. Supporting data for Figure 22 are presented in Table 66.

* The number of boats (respondents) was fewer than 3; due to confidentiality concerns, responses are not presented.

Figure 22. Average trip costs for Guam spear/snorkel trips from 2011–2018 (adjusted to 2018 dollars)

Table 66. Average trip costs for Guam spear/snorkel fish trips from 2011–2018 (adjusted to2018 dollars)

								Gear		Bait &	
	Total	Total trip	Fuel	Fuel cost	Ice	Ice cost	Gear	losted	Bait &	chum cost	
	trip	costs (\$)	cost	(\$)	cost	(\$)	losted	cost (\$)	chum	(\$)	CPI
Year	costs (\$)	(adjusted)	(\$)	(adjusted)	(\$)	(adjusted)	cost (\$)	(adjusted)	cost (\$)	(adjusted)	adjustor
2011*	-	-									1.149
2012*	-	-									1.114
2013*	-	-									1.114
2014	28	31	18	20	10	11	0	0	0	0	1.105
2015	33	37	26	29	7	7	0	0	0	0	1.115
2016	28	30	21	22	7	7	0	0	0	0	1.052
2017	45	46	26	26	12	12	7	7	0	0	1.026
2018	-	-									1

* The number of boats (respondents) was fewer than 3; due to confidentiality concerns, responses are not presented. Data source: PIFSC Continuous Cost Data Collection Program (Chan and Pan 2019).

2.3.3.5 Guam Crustaceans

There are currently no socioeconomic data specific to this fishery. Future reports will include new information as resources allow.

2.3.3.6 Guam Precious Corals

There are currently no socioeconomic data specific to this fishery. Future reports will include new information as resources allow.

2.3.4 Ongoing Research and Information Collection

Each year, the PIFSC reports on the status of economic data collections for select regional commercial fisheries. This supports a national economic data monitoring effort known as the Commercial Fishing Economic Assessment Index (CFEAI). Details on the CFEAI and access to data from other regions is available at: <u>https://www.st.nmfs.noaa.gov/data-and-tools/CFEAI-RFEAI/</u>

The table below represents the most recent data available for CFEAI metrics for select regional commercial fisheries for 2018. Entries for Marianas insular fisheries are bolded in red. These values represent the most recent year of data for key economic data monitoring parameters (fishing revenues, operating costs, and fixed costs). The assessment column indicates the most recent publication year for specific economic assessments (returns above operating cost, profit), where available.

PIFSC completed a cost-earnings survey of small boat fisheries in Guam and the CNMI during 2018-2019, to serve as an update to the previous 2011 cost-earnings survey (Hospital and Beavers, 2012; 2014). This 2018 survey collected data on fishing revenues, operating costs, and fixed costs, as well as numerous elements related to fishing behavior, market participation, and fishery demographics.

		2018 Projected CFEAI							
				. 1/2018-12/2018)					
		Data			nent				
Pacific Islands Fisheries				Anticipated Returns	Anticipated				
Pacific Islands Fisheries	Anticipated	Anticipated	Anticipated	Above Operating	Profit				
	Fishing Revenue	Operating	Fixed Cost	Costs (Quasi Rent)	Assessment				
	Most Recent	Cost Most	Most Recent	Assessment Most	Most Recent				
	Year	Recent Year	Year	Recent Year	Year				
HI Longline	2018	2018	2013	2018	2016				
ASam Longline	2018	2018	2017	2018	2016				
HI Offshore Handline	2018	2014	2014	2018	2018				
HI Small Boat (pelagic)	2018	2014	2014	2017	2017				
HI Small Boat (bottomfish)	2018	2014	2014	2017	2017				
HI Small Boat (reef)	2018	2014	2014	2017	2017				
Guam Small boat	2018	2018	2018	2018					
CNMI Small boat	2018	2018	2018	2018					
ASam Small boat	2018	2018	2018	2018					

Table 67. Pacific Islands Region 2018 Commercial Fishing Economic Assessment Index

Table 68. Pacific Islands Region 2019 Commercial Fishing Economic Assessment Index

		20)19 Projected	I CFEAI	
		2019 Report	ing Year (e.g.	. 1/2019-12/2019)	
		Data	Assessn	nent	
Pacific Islands Fisheries	Anticipated Fishing Revenue		Anticipated Fixed Cost	Anticipated Returns Above Operating Costs (Quasi Rent)	Profit Assessment
	Most Recent Year	Cost Most Recent Year	Most Recent Year	Assessment Most Recent Year	Most Recent Year
HI Longline	2019	2019	2019	2019	2016
ASam Longline	2019	2019	2017	2019	2019
HI Offshore Handline	2019	2014	2014	2018	2018
HI Small Boat (pelagic)	2019	2014	2014	2017	2017
HI Small Boat (bottomfish)	2019	2014	2014	2017	2017
HI Small Boat (reef)	2019	2014	2014	2017	2017
Guam Small boat	2019	2019	2018	20 19	2020
CNMI Small boat	2019	2019	2018	20 19	2020
ASam Small boat	2019	2019	2018	2019	

PIFSC also generates projections for upcoming fiscal years, and the table above provides the projected CFEAI report for 2019 (*all projected activities and analyses are subject to funding*). Based on early projections PIFSC intends to maintain ongoing economic data collections in the CNMI and Guam for small boat fisheries (Chan and Pan, 2019) during 2019. PIFSC intends for results of the 2018 cost-earnings survey, including a profit assessment, published by 2020.

Community social indicators have been generated for the CNMI and Guam (Kleiber *et al.*, 2018) in accordance with a national project to describe and evaluate community well-being measured through social, economic, and psychological welfare (<u>https://www.st.nmfs.noaa.gov/</u><u>humandimensions/social-indicators/index</u>). However, these indicators rely on Census data, and cannot be updated until 2020 Census data becomes available.

PIFSC scientists will conduct research in the Marianas during 2019-2020 with the goal to engage the Marianas fishing community to better understand the nature of shark interactions and explore mitigation techniques aligned with community needs and values.

2.3.5 Relevant PIFSC Economics and Human Dimensions Publications: 2018

- Ayers, A.L., 2018. The commonwealth of the Northern Mariana Islands fishing community profile: 2017 update. U.S. Dept. of Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-PIFSC-66, 57 p. doi:10.7289/V5/TM-PIFSC-66.
- Finkbeiner, E.M., Micheli, F., Bennett, N.J., Ayers, A.L., Le Cornu, E., and A.N. Doeer, 2018. Exploring trade-offs in climate change response in the context of Pacific Island fisheries. Marine Policy. 88:359-364. doi:10.1016/j.marpol.2017.09.032.
- Kleiber, D., Kotowicz, D., and J. Hospital, 2018. Applying national community social vulnerability indicators to fishing communities in the Pacific Island region. U.S. Dept. of Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-PIFSC-65, 63 p. doi:10.7289/V5/TM-PIFSC-65.

2.3.6 References

- Allen, S.D. and J.R. Amesbury, 2012. Commonwealth of the Northern Mariana Islands as a fishing community. U.S. Dep. Commer., NOAA Tech. Memo., NOAA-TM-NMFSPIFSC-36, 89 p. <u>https://www.pifsc.noaa.gov/library/pubs/tech/NOAA_Tech_Memo_PIFSC_36.pdf.</u>
- Allen, S. and P. Bartram, 2008. Guam as a fishing community. Pacific Islands Fisheries Science Center Administrative Report H-08-01, 61 p. <u>https://www.pifsc.noaa.gov/library/pubs/admin/PIFSC_Admin_Rep_08-01.pdf.</u>
- Ayers, A.L., 2018. The commonwealth of the Northern Mariana Islands fishing community profile: 2017 update. U.S. Dept. of Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-PIFSC-66, 57 p. doi:10.7289/V5/TM-PIFSC-66.
- Chan, H.L. and M. Pan, 2019. Tracking economic performance indicators for small boat fisheries in America Samoa, Guam, and the Commonwealth of the Northern Mariana Islands. U.S.

Dept. of Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-PIFSC-79, 76 p. <u>https://doi.org/10.25923/8etp-x479</u>.

- Grace-McCaskey, C. 2014. Examining the potential of using secondary data to better understand human-reef relationships across the Pacific. Pacific Islands Fish. Sci. Cent., Natl. Mar. Fish. Serv., NOAA, Honolulu, HI 96818-5007. Pacific Islands Fish. Sci. Cent. Admin. Rep. H-14-01, 69 p. <u>https://www.pifsc.noaa.gov/library/pubs/admin/PIFSC_Admin_ Rep_14-01.pdf.</u>
- Hospital, J. and C. Beavers, 2012. Economic and social characteristics of Guam's small boat fisheries. Pacific Islands Fish. Sci. Cent., Natl. Mar. Fish. Serv., NOAA, Honolulu, HI 96822-2396. Pacific Islands Fish. Sci. Cent. Admin. Rep. H-12-06, 60 p. + Appendices. <u>https://www.pifsc.noaa.gov/library/pubs/admin/PIFSC_Admin_Rep_12-06.pdf.</u>
- Hospital, J. and C. Beavers, 2014. Economic and Social Characteristics of Small Boat Fishing in the Commonwealth of the Northern Mariana Islands. Pacific Islands Fish. Sci. Cent., Natl. Mar. Fish. Serv., NOAA, Honolulu, HI 96818-5007. Pacific Islands Fish. Sci. Cent. Admin. Rep. H-14-02, 58 p.+ Appendices. <u>https://www.pifsc.noaa.gov/library/ pubs/admin/PIFSC_Admin_Rep_14-02.pdf.</u>
- Kotowicz, D.M. and S.D. Allen, 2015. Results of a survey of CNMI and Guam residents on the Marianas Trench Marine National Monument. Pacific Islands Fisheries Science Center, PIFSC Data Report, DR-13-009, 55 p. <u>https://www.pifsc.noaa.gov/library/pubs/DR-13-009.pdf.</u>
- Kotowicz, D.M. andL. Richmond, 2013. Traditional Fishing Patterns in the Marianas Trench Marine National Monument. Pacific Islands Fish. Sci. Cent., Natl. Mar. Fish. Serv., NOAA, Honolulu, HI 96822-2396. Pacific Islands Fish. Sci. Cent. Admin. Rep. H-13-05, 54 p. <u>https://www.pifsc.noaa.gov/library/pubs/admin/PIFSC_Admin_Rep_13-05.pdf.</u>
- National Coral Reef Monitoring Program (NCRMP) Socioeconomic Monitoring for Guam infographic, available at: <u>https://www.coris.noaa.gov/monitoring/resources/</u> <u>GuamCoral.pdf.</u>
- PIFSC Socioeconomics Program, 2016. CNMI, American Samoa, and Guam Small Boat Fishery Trip Expenditure (2009 to present). Pacific Islands Fisheries Science Center, <u>https://inport.nmfs.noaa.gov/inport/item/20627.</u>
- Polovina, J. and Dreflak, K. (Chairs), Baker, J., Bloom, S., Brooke, S., Chan, V., Ellgen, S., Golden, D., Hospital, J., Van Houtan, K., Kolinski, S., Lumsden, B., Maison, K., Mansker, M., Oliver, T., Spalding, S., and P. Woodworth-Jefcoats, 2016. Pacific Islands Regional Action Plan: NOAA Fisheries climate science strategy. U.S. Dept. of Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-PIFSC-59, 33 p.
- Richmond, L., and D.M. Kotowicz, 2015. Equity and access in marine protected areas: The history and future of 'traditional indigenous fishing' in the Marianas Trench Marine National Monument. *Applied Geography*, *59*, pp. 117-124.

Rubinstein, D., 2001. A Sociocultural Study of Pelagic Fishing Activities in Guam. Final progress report available from University of Hawaii Joint Institute for Marine and Atmospheric Research, Pelagic Fisheries Research Program. Also available at: <u>http://www.soest.hawaii.edu/PFRP/pdf/rubinstein01.pdf.</u>

Western Pacific Regional Fishery Management Council, 2016. Draft Fishery Ecosystem Plan for the Mariana Archipelago. Honolulu, HI. 114 p. + Appendices.

2.4 PROTECTED SPECIES

This section of the report summarizes information on protected species interactions in fisheries managed under the Mariana FEP. Protected species covered in this report include sea turtles, seabirds, marine mammals, sharks, and corals. Most of these species are protected under the Endangered Species Act (ESA), the Marine Mammal Protection Act (MMPA), and/or the Migratory Bird Treaty Act (MBTA). A list of protected species found in or near Mariana Archipelago waters and a list of critical habitat designations in the Pacific Ocean are included in Appendix B.

2.4.1 Indicators for Monitoring Protected Species Interaction

This report monitors the status of protected species interactions in the Marianas FEP fisheries using proxy indicators such as fishing effort, and changes in gear types as these fisheries do not have observer coverage. Creel surveys and logbook programs are not expected to provide reliable data about protected species interactions. Discussion of protected species interactions is focused on fishing operations in federal waters and associated transit through territorial waters.

2.4.2 FEP Conservation Measures

Bottomfish, precious coral, coral reef and crustacean fisheries managed under this FEP have no specific regulations in place to mitigate protected species interactions. Destructive gear such as bottom trawls, bottom gillnets, explosives and poisons are prohibited under this FEP, and these prohibitions benefit protected species by preventing potential interactions with non-selective fishing gear.

2.4.2.1 ESA Consultations

ESA consultations were conducted by NMFS and the U.S. Fish and Wildlife Service (USFWS; for species under their jurisdiction) to ensure ongoing fisheries operations managed under the Marianas FEP are not jeopardizing the continued existence of any listed species or adversely modifying critical habitat. The results of these consultations conducted under section 7 of the ESA are briefly described below and summarized in Table 69.

NMFS concluded in an informal consultation dated April 29, 2015 that all fisheries managed under the Mariana Archipelago FEP are not likely to adversely affect the Indo-West Pacific DPS of scalloped hammerhead shark or ESA-listed reef-building corals.

In January 2018, oceanic whitetip sharks and giant manta rays were listed under the ESA (83 FR 4153 and 83 FR 2916, respectively). NMFS will reinitiate consultation for those two species for the applicable fisheries if NMFS determines that effects are likely. There is no record of giant manta ray incidental catches in Mariana fisheries, and NMFS is reviewing catch data on oceanic white tip shark incidental catch in these fisheries.

Table 69. Summary of ESA consultations for Mariana Archipelago FEP Fisheries

Fishery	Consultation date	Consultation type ^a	Outcome ^b	Species
Bottomfish	3/8/2008	BiOp	NLAA	Loggerhead sea turtle

Fishery	Consultation date	Consultation type ^a	Outcome ^b	Species
(CNMI & Guam)	6/3/2008	LOC	NLAA	Green sea turtle, olive ridley sea turtle, hawksbill sea turtle, leatherback sea turtle, blue whale, fin whale, humpback whale, sei whale sperm whale
	3/7/2002	LOC	NLAA	Loggerhead sea turtle, leatherback sea turtle, olive ridley sea turtle, green sea turtle, hawksbill sea turtle, humpback whale, blue whale, fin whale, sei whale, sperm whale
Coral reef ecosystem (CNMI & Guam)	5/22/2002	LOC (USFWS)	NLAA	Green, hawksbill, leatherback, loggerhead and olive ridley turtles, Newell's shearwater, short-tailed albatross, Laysan duck, Laysan finch, Nihoa finch, Nihoa millerbird, Micronesian megapode, 6 terrestrial plants
	6/3/2008	LOC	NLAA	Green sea turtle, olive ridley sea turtle, hawksbill sea turtle, leatherback sea turtle, blue whale, fin whale, humpback whale, sei whale, sperm whale
Crustaceans (CNMI & Guam)	9/28/2007	LOC	NLAA	Green sea turtle, loggerhead sea turtle, olive ridley sea turtle, hawksbill sea turtle, leatherback sea turtle, blue whale, humpback whale, sei whale, sperm whale
Precious corals (CNMI & Guam)	10/4/1978	BiOp	Does not constitute threat	Sperm whale, leatherback sea turtle
Precious corals (Guam)	12/20/2000	LOC	NLAA	Humpback whale, green sea turtle, hawksbill sea turtle
All fisheries	4/29/2015	BE & LOC	NLAA	Reef-building corals, scalloped hammerhead shark (Indo-west Pacific DPS)

^a BiOp = Biological Opinion; LOC = Letter of Concurrence; BE = Biological Evaluation

^b LAA = likely to adversely affect; NLAA = not likely to adversely affect.

2.4.2.1.1 Bottomfish Fishery

In a Biological Opinion issued on March 8, 2002, NMFS concluded that the ongoing operation of the Western Pacific Region's bottomfish and seamount fisheries was not likely to jeopardize the continued existence of any threatened or endangered species under NMFS's jurisdiction or

destroy or adversely modify any critical habitat. In an informal consultation on June 3, 2008, NMFS concluded that Mariana Archipelago bottomfish fisheries are not likely to adversely affects four sea turtle species (leatherback, olive ridley, green, and hawksbill turtles) and five marine mammal species (humpback, blue, fin, sei, and sperm whales).

2.4.2.1.2 Crustacean Fishery

In an informal consultation completed on September 28, 2007, NMFS concluded that Mariana Archipelago crustacean fisheries are not likely to adversely affect five sea turtle species (loggerhead, leatherback, olive ridley, green, and hawksbill turtles) and five marine mammal species (humpback, blue, fin, sei, and sperm whales).

2.4.2.1.3 Coral Reef Fishery

In an informal consultation completed by NMFS on March 7, 2002, NMFS concluded that fishing activities conducted under the Coral Reef Ecosystems FMP are not likely to adversely affect endangered or threatened species or critical habitat under NMFS's jurisdiction. On May 22, 2002, the USFWS concurred with the determination of NMFS that the activities conducted under the Coral Reef Ecosystems FMP are not likely to adversely affect listed species under USFWS's exclusive jurisdiction (i.e., seabirds) and listed species shared with NMFS (i.e., sea turtles).

In an informal consultation completed in June 3, 2008, NMFS concluded that the Mariana Archipelago coral reef fisheries are not likely to adversely affect adversely affects four sea turtle species (leatherback, olive ridley, green, and hawksbill turtles) and five marine mammal species (humpback, blue, fin, sei, and sperm whales).

2.4.2.1.4 Precious Coral Fishery

In a Biological Opinion issued on October 4, 1978, NMFS concluded that the ongoing operation of the Western Pacific Region's precious coral fisheries was not likely to jeopardize the continued existence of any threatened or endangered species under NMFS's jurisdiction or destroy or adversely modify critical habitat. In an informal consultation completed on December 20, 2000, NMFS concluded that Mariana Archipelago precious coral fisheries are not likely to adversely affect humpback whales, green turtles, or hawksbill turtles.

2.4.2.2 Non-ESA Marine Mammals

The MMPA requires NMFS to annually publish a List of Fisheries (LOF) that classifies commercial fisheries in one of three categories based on the level of mortality and serious injury of marine mammals associated with that fishery. According to the 2019 LOF (84 FR 22051, May 16, 2019), the Guam and CNMI bottomfish fisheries operating under the Marianas FEP are classified as Category III fisheries (i.e., a remote likelihood of or no known incidental mortality and serious injury of marine mammals).

2.4.3 Status of Protected Species Interactions in the Marianas FEP Fisheries

2.4.3.1 Bottomfish and Coral Reef Fisheries

There are no observer data available for the Guam and CNMI bottomfish or coral reef fisheries. However based on current ESA consultations, these fisheries are not expected to interact with any ESA-listed species in federal waters around Guam or CNMI. NMFS has also concluded that the Mariana Archipelago bottomfish and coral reef commercial fisheries will not affect marine mammals in any manner not considered or authorized under the Marine Mammal Protection Act.

Based on fishing effort and other characteristics described in Chapter 1 of this report, no notable changes have been observed in the fishery. There is no other information to indicate that impacts to protected species from this fishery have changed in recent years.

2.4.3.2 Crustacean and Precious Coral Fisheries

There are currently no crustacean or precious coral fisheries operating in federal waters around Guam or CNMI. However based on current ESA consultations, crustacean fisheries are not expected to interact with any ESA-listed species in federal waters around Guam or CNMI. NMFS has also concluded that the Mariana Archipelago crustacean and precious coral commercial fisheries will not affect marine mammals in any manner not considered or authorized under the Marine Mammal Protection Act.

2.4.4 Identification of Emerging Issues

Several ESA-listed species are being evaluated for critical habitat designation (Table 70). If critical habitats are designated, they will be included in this SAFE report and impacts from FEP-managed fisheries will be evaluated under applicable mandates.

Sp	ecies		Listing Process	5	Post-Listing Activity		
Common Name	Scientific Name	90-Day Finding	12-Month Finding / Proposed Rule	Final Rule	Critical Habitat	Recovery Plan	
Oceanic whitetip shark	Carcharhinus longimanus	Positive (81 FR 1376, 1/12/2016)	Positive, threatened (81 FR 96304, 12/29/2016)	Listed as Threatened (83 FR 4153, 1/30/18)	Not determinable because of insufficient data (83 FR 4153, 1/30/18)	ТВА	
Pacific bluefin tuna	Thunnus orientalis	Positive (81 FR 70074, 10/11/2016)	Not warranted (82 FR 37060, 8/8/17)	N/A	N/A	N/A	

Table 70. Candidate ESA species, and ESA-listed species being evaluated for criticalhabitat designation

Sp	ecies		Listing Process	8	Post-Listi	ng Activity
Common Name	Scientific Name	90-Day Finding	12-Month Finding / Proposed Rule	Final Rule	Critical Habitat	Recovery Plan
Giant manta ray	Manta birostris	Positive (81 FR 8874, 2/23/2016)	Positive, threatened (82 FRN 3694, 1/12/2017)	Listed as Threatened (83 FR 2916, 1/22/18)	Not determinable because of insufficient data (83 FR 2916, 1/22/18)	ТВА
Reef manta ray	Manta alfredi	Positive (81 FR 8874, 2/23/2016)	Not warranted (82 FRN 3694, 1/12/2017)	N/A	N/A	N/A
Corals	N/A	Positive for 82 species (75 FR 6616, 2/10/2010)	Positive for 66 species (77 FR 73219, 12/7/2012)	20 species listed as threatened (79 FR 53851, 9/10/2014)	In development, proposal expected TBA	In development, expected TBA, interim recovery outline in place
Cauliflower coral	Pocillopora meandrina	Positive (83 FR 47592, 9/20/2018)	TBA (status review ongoing)	ТВА	N/A	N/A
Giant Clams	Hippopus hippopus, H. porcellanus, Tridacna costata, T. derasa, T. gigas, T. Squamosa, and T. tevoroa	Positive (82 FR 28946, 06/26/2017)	TBA (status review ongoing)	ТВА	N/A	N/A
Green sea turtle	Chelonia mydas	Positive (77 FR 45571, 8/1/2012)	Identification of 11 DPSs, endangered and threatened (80 FR 15271, 3/23/2015)	11 DPSs listed as endangered and threatened (81 FR 20057, 4/6/2016)	In development, proposal expected TBA ^a	ТВА

Sp	ecies		Listing Process	5	Post-Listing Activity		
Common Name	Scientific Name	90-Day Finding	12-Month Finding / Proposed Rule	Final Rule	Critical Habitat	Recovery Plan	
Leatherback sea turtle	Dermochelys coriacea	Positive 90- day finding on a petition to identify the Northwest Atlantic leatherback turtle as a DPS (82 FR 57565, 12/06/2017)	TBA	TBA	N/A	N/A	
Humpback whale	Megaptera novaeangliae	Positive 90- day finding on petition to classify the North Pacific population as DPS and delist the DPS (78 FR 53391, 8/29/2013)	Revision of species-wide listing and listing of four DPSs as threatened or endangered (80 FR 22304)	Revision of species wide listing; Western North Pacific DPS listed as endangered (81 FR 62259, 9/8/2016)	Critical habitat of Western North Pacific DPS in development, proposal expected 2019	TBA	

^a NMFS and USFWS have been tasked with higher priorities regarding sea turtle listings under the ESA, and do not anticipate proposing green turtle critical habitat designations in the immediate future.

2.4.5 Identification of Research, Data, and Assessment Needs

The following research, data, and assessment needs for insular fisheries were identified by the Council's Protected Species Advisory Committee and Plan Team:

- Improve the precision of commercial and non-commercial fisheries data to improve understanding of potential protected species impacts.
- Define and evaluate innovative approaches to derive robust estimates of protected species interactions in insular fisheries.

2.5 CLIMATE AND OCEANIC INDICATORS

2.5.1 Introduction

Over the past few years, the Council has incorporated climate change into the overall management of the fisheries over which it has jurisdiction. This 2018 Annual SAFE Report includes a now standard chapter on indicators of climate and oceanic conditions in the Western Pacific region. These indicators reflect global climate variability and change as well as trends in local oceanographic conditions.

The reasons for the Council's decision to provide and maintain an evolving discussion of climate conditions as an integral and continuous consideration in their deliberations, decisions, and reports are numerous:

- Emerging scientific and community understanding of the impacts of changing climate conditions on fishery resources, the ecosystems that sustain those resources, and the communities that depend upon them;
- Recent Federal Directives including the 2010 implementation of a National Ocean Policy that identified Resiliency and Adaptation to Climate Change and Ocean Acidification as one of nine National priorities as well as the development of a Climate Science Strategy by NMFS in 2015 and the subsequent development of the Pacific Islands Regional Action Plan for climate science; and
- The Council's own engagement with NOAA as well as jurisdictional fishery management agencies in American Samoa, CNMI, Guam, and Hawaii as well as fishing industry representatives and local communities in those jurisdictions.

In 2013, the Council began restructuring its Marine Protected Area/Coastal and Marine Spatial Planning Committee to include a focus on climate change, and the committee was renamed as the Marine Planning and Climate Change (MPCC) Committee. In 2015, based on recommendations from the committee, the Council adopted its Marine Planning and Climate Change Policy and Action Plan, which provided guidance to the Council on implementing climate change measures, including climate change research and data needs. The revised Pelagic FEP (February 2016) included a discussion on climate change data and research as well as a new objective (Objective 9) that states the Council should consider the implications of climate change in decision-making, with the following sub-objectives:

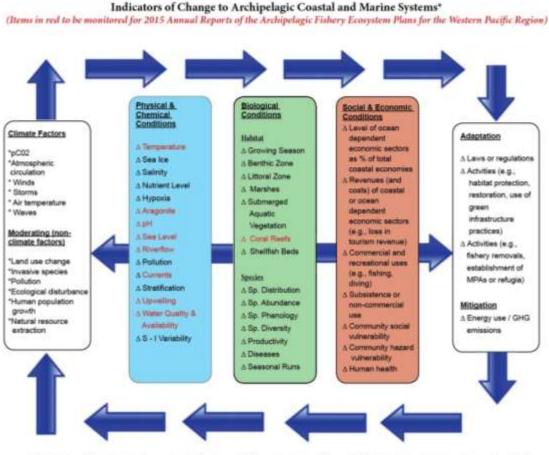
- To identify and prioritize research that examines the effects of climate change on Council-managed fisheries and fishing communities.
- To ensure climate change considerations are incorporated into the analysis of management alternatives.
- To monitor climate change related variables via the Council's Annual Reports.
- To engage in climate change outreach with U.S. Pacific Islands communities.

Beginning with the 2015 report, the Council and its partners began providing continuing descriptions of changes in a series of climate and oceanic indicators.

This annual report focuses previous years' efforts by refining existing indicators and improving communication of their relevance and status. Future reports will include additional indicators as the information becomes available and their relevance to the development, evaluation, and revision of the FEPs becomes clearer. Working with national and jurisdictional partners, the Council will make all datasets used in the preparation of this and future reports available and easily accessible.

2.5.2 Response to Previous Plan Team and Council Recommendations

At its 170th meeting from June 20-22, 2017, the Council directed staff to support the development of community training and outreach materials and activities on climate change. In addition, the Council directed staff to coordinate a "train-the-trainers" workshop that includes NOAA scientists who presented at the 6th Marine Planning and Climate Change Committee (MPCCC) meeting and the MPCCC committee members in preparation for community workshops on climate and fisheries. The Council and NOAA partnered to deliver the workshops in the fall of 2017 to the MPCCC members in Hawaii (with the Hawaii Regional Ecosystem Advisory Committee), as well as American Samoa, Guam, and the CNMI (with their respective Advisory Panel groups). Feedback from workshop participants has been incorporated into this year's climate and oceanic indicator section. To prepare for community outreach, Guam-based MPCCC members conducted a climate change survey and shared the results with the MPCCC at its 7th meeting on April 10th and 11th, 2018.


Prior to holding its 8th meeting, the MPCCC was disbanded in early 2019, re-allocating its responsibilities among its members already on other committees or teams, such as the Fishery Ecosystem Plan Teams.

The Council also directed staff to explore funding avenues to support the development of additional oceanic and climate indicators, such as wind and extratropical storms. These indicators were added to this module by corresponding Plan Team members in 2018.

2.5.3 Conceptual Model

In developing this chapter, the Council relied on a number of recent reports conducted in the context of the U.S. National Climate Assessment including, most notably, the 2012 Pacific Islands Regional Climate Assessment (PIRCA) and the Ocean and Coasts chapter of the 2014 report on a Pilot Indicator System prepared by the National Climate Assessment and Development Advisory Committee (NCADAC).

The Advisory Committee Report presented a possible conceptual framework designed to illustrate how climate factors can connect to and interact with other ecosystem components to impact ocean and coastal ecosystems and human communities. The Council adapted this model with considerations relevant to the fishery resources of the Western Pacific region:

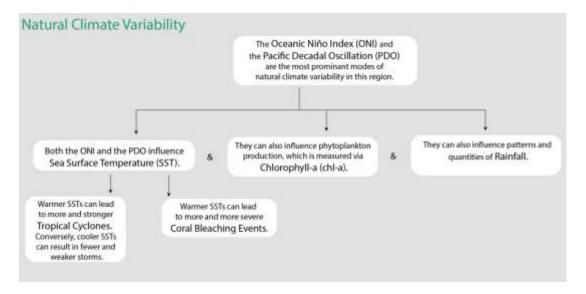
*Adapted from National Climate Aussiment and Development Advisory Committee. February 2014. National Climate Indicators System Report. B-59.

Figure 23. Schematic diagram illustrating how indicators are connected to one another and how they vary as a result of natural climate variability

As described in the 2014 NCADAC report, the conceptual model presents a "simplified representation of climate and non-climate stressors in coastal and marine ecosystems." For the purposes of this Annual Report, the modified Conceptual Model allows the Council and its partners to identify indicators of interest to be monitored on a continuing basis in coming years. The indicators shown in red were considered for inclusion in the Annual SAFE Reports, though the final list of indicators varied somewhat. Other indicators will be added over time as data become available and an understanding of the causal chain from stressors to impacts emerges.

The Council also hopes that this Conceptual Model can provide a guide for future monitoring and research. This guide will ideally enable the Council and its partners to move forward from observations and correlations to understanding the specific nature of interactions, and to develop capabilities to predict future changes of importance in the developing, evaluating, and adapting of FEPs in the Western Pacific region.

2.5.4 Selected Indicators


The primary goal for selecting the Indicators used in this (and future reports) is to provide fisheries-related communities, resource managers, and businesses with climate-related situational awareness. In this context, Indicators were selected to:

- Be fisheries relevant and informative;
- Build intuition about current conditions in light of changing climate;
- Provide historical context; and
- Recognize patterns and trends.

In this context, this section includes the following climate and oceanic indicators:

- Atmospheric concentration of carbon dioxide (CO₂)
- Oceanic pH at Station ALOHA;
- Oceanic Niño Index (ONI);
- Pacific Decadal Oscillation (PDO);
- Tropical cyclones;
- Sea surface temperature (SST);
- Coral Thermal Stress Exposure
- Chlorophyll-A
- Rainfall
- Sea Level (Sea Surface Height)

Figure 24 and Figure 25 provide a description of these indicators and illustrate how they are connected to each other in terms of natural climate variability and anthropogenic climate change.

Figure 24. Schematic diagram illustrating how indicators are connected to one another and how they vary as a result of natural climate variability

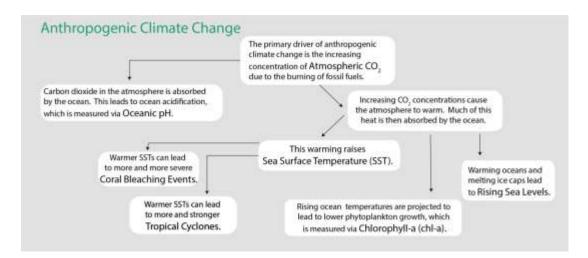


Figure 25 Schematic diagram illustrating how indicators are connected to one another and how they vary as a result of anthropogenic climate change

Figure 26. Regional spatial grids representing the scale of the climate change indicators being monitored

2.5.4.1 Atmospheric Concentration of Carbon Dioxide at Mauna Loa

Rationale: Atmospheric carbon dioxide is a measure of what human activity has already done to affect the climate system through greenhouse gas emissions. It provides quantitative information in a simplified, standardized format that decision makers can easily understand. This indicator

demonstrates that the concentration (and, in turn, warming influence) of greenhouse gases in the atmosphere has increased substantially over the last several decades.

Status: Atmospheric CO_2 is increasing exponentially. This means that atmospheric CO_2 is increasing at a faster rate each year. In 2018, the annual mean concentration of CO_2 was 409 ppm. In 1959, the first year of the time series, it was 316 ppm. The annual mean passed 350 ppm in 1988 and 400 ppm in 2015 (NOAA 2019b).

Description: Monthly mean atmospheric carbon dioxide (CO_2) at Mauna Loa Observatory, Hawaii in parts per million (ppm) from March 1958 to present. The observed increase in monthly average carbon dioxide concentration is primarily due to CO_2 emissions from fossil fuel burning. Carbon dioxide remains in the atmosphere for a very long time, and emissions from any location mix throughout the atmosphere in about one year. The annual oscillations at Mauna Loa, Hawaii are due to the seasonal imbalance between the photosynthesis and respiration of plants on land. During the summer growing season photosynthesis exceeds respiration and CO_2 is removed from the atmosphere, whereas outside the growing season respiration exceeds photosynthesis and CO_2 is returned to the atmosphere. The seasonal cycle is strongest in the northern hemisphere because of this hemisphere's larger land mass.

Timeframe: Annual, monthly.

Region/Location: Mauna Loa, Hawaii but representative of global atmospheric carbon dioxide concentration.

Measurement Platform: In-situ station.

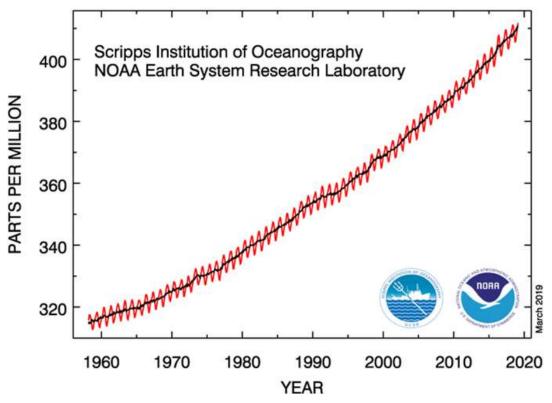


Figure 27. Monthly mean (red) and seasonally-corrected (black) atmospheric carbon dioxide at Mauna Loa Observatory, Hawaii

2.5.4.2 Oceanic pH

Rationale: Oceanic pH is a measure of how greenhouse gas emissions have already impacted the ocean (NOAA PMEL 2019). This indicator demonstrates that oceanic pH has decreased significantly over the past several decades (i.e., the ocean has become more acidic). Increasing ocean acidification limits the ability of marine organisms to build shells and other calcareous structures. Recent research has shown that pelagic organisms such as pteropods and other prey for commercially-valuable fish species are already being negatively impacted by increasing acidification (Feely et al., 2016). The full impact of ocean acidification on the pelagic food web is an area of active research (Fabry et al., 2008).

Status: The ocean is roughly 9.4% more acidic than it was nearly 30 years ago at the start of this time series. Over this time, pH has declined by 0.0389 at a constant rate. In 2017, the most recent year for which data are available, the average pH was 8.07. Additionally, small variations seen over the course of the year are now outside the range seen in the first year of the time series. The highest pH value reported for the most recent year (8.0831) is lower than the lowest pH value reported in the first year of the time series (8.0845).

Description: Trends in surface (5 m) pH at Station ALOHA, north of Oahu (22.75°N, 158°W), collected by the Hawai'i Ocean Time Series (HOT) from October 1988 to 2017 (2018 data are not yet available). Oceanic pH is a measure of ocean acidity, which increases as the ocean absorbs carbon dioxide from the atmosphere. Lower pH values represent greater acidity. Oceanic

pH is calculated from total alkalinity (TA) and dissolved inorganic carbon (DIC). Total alkalinity represents the ocean's capacity to resist acidification as it absorbs CO_2 and the amount of CO_2 absorbed is captured through measurements of DIC. The multi-decadal time series at Station ALOHA represents the best available documentation of the significant downward trend in oceanic pH since the time series began in 1988. Oceanic pH varies over both time and space, though the conditions at Station ALOHA are considered broadly representative of those across the Western and Central Pacific's pelagic fishing grounds.

Timeframe: Monthly.

Region/Location: Station ALOHA: 22.75°N, 158°W.

Measurement Platform: In-situ station.

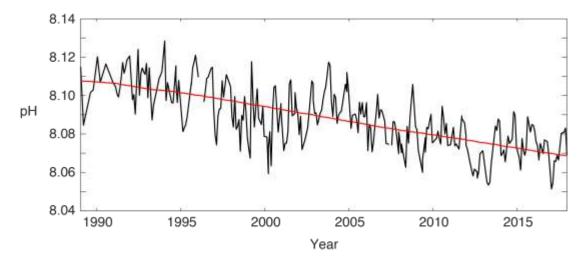


Figure 28. Oceanic pH (black) and its trend (red) at Station ALOHA from 1989 – 2016

2.5.4.3 Oceanic Niño Index

Rationale: The El Niño – Southern Oscillation (ENSO) cycle is known to have impacts on Pacific fisheries including tuna fisheries. The ONI focuses on ocean temperature, which has the most direct effect on these fisheries.

Status: In 2018, the ONI transitioned from a weak La Niña to neutral conditions.

Description: The three-month running mean of satellite remotely-sensed sea surface temperature (SST) anomalies in the Niño 3.4 region ($5^{\circ}S - 5^{\circ}N$, $120^{\circ} - 170^{\circ}W$). The Oceanic Niño Index (ONI) is a measure of the El Niño – Southern Oscillation (ENSO) phase. Warm and cool phases, termed El Niño and La Niña respectively, are based in part on an ONI threshold of $\pm 0.5 \,^{\circ}C$ being met for a minimum of five consecutive overlapping seasons. Additional atmospheric indices are needed to confirm an El Niño or La Niña event, as the ENSO is a coupled ocean-atmosphere phenomenon. The atmospheric half of ENSO is measured using the Southern Oscillation Index.

Timeframe: Every three months.

Region/Location: Niño 3.4 region, $5^{\circ}S - 5^{\circ}N$, $120^{\circ} - 170^{\circ}W$.

Measurement Platform: In-situ station, satellite, model.

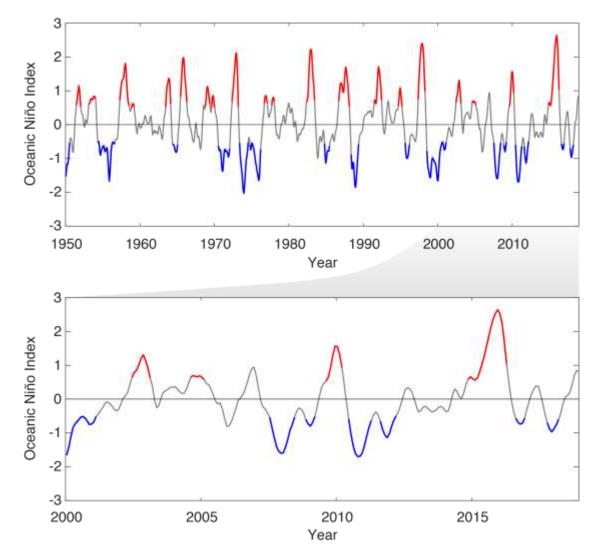


Figure 29. Oceanic Niño Index from 1950-2018 (top) and 2000–2018 (bottom) with El Niño periods in red and La Niña periods in blue

2.5.4.4 Pacific Decadal Oscillation

Rationale: The Pacific Decadal Oscillation (PDO) was initially named by fisheries scientist Steven Hare in 1996 while researching connections between Alaska salmon production cycles and Pacific climate. Like ENSO, the PDO reflects changes between periods of persistently warm or persistently cool ocean temperatures, but over a period of 20 to 30 years (versus six to 18 months for ENSO events). The climatic finger prints of the PDO are most visible in the Northeastern Pacific, but secondary signatures exist in the tropics. Status: The PDO was positive, or warm, for much of 2018. In March and June, the index dipped just below zero but returned to a positing value the following months. PDO index values were not yet available for the last three months of 2018 at the time of publication.

Description: The PDO is often described as a long-lived El Niño-like pattern of Pacific climate variability. As seen with the better-known ENSO, extremes in the PDO pattern are marked by widespread variations in the Pacific Basin and the North American climate. In parallel with the ENSO phenomenon, the extreme cases of the PDO have been classified as either warm or cool, as defined by ocean temperature anomalies in the northeast and tropical Pacific Ocean. When SST is below average in the interior North Pacific and warm along the North American coast, and when sea level pressures are below average in the North Pacific, the PDO has a positive value. When the climate patterns are reversed, with warm SST anomalies in the interior and cool SST anomalies along the North American coast, or above average sea level pressures over the North Pacific, the PDO has a negative value. (https://www.ncdc.noaa.gov/teleconnections/pdo/).

Timeframe: Annual, monthly.

Region/Location: Pacific Basin north of 20°N.

Measurement Platform: In-situ station, satellite, model.

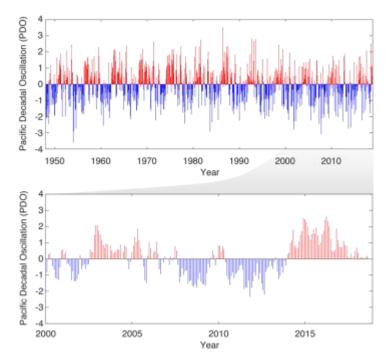


Figure 30. Pacific Decadal Oscillation from 1950–2018 (top) and 2000–2018 (bottom) with positive warm periods in red and negative cool periods in blue

2.5.4.5 Tropical Cyclones

Rationale: The effects of tropical cyclones are numerous and well known. At sea, storms disrupt and endanger shipping traffic as well as fishing effort and safety. The Hawai`i longline fishery, for example, has had serious problems with vessels dodging storms at sea, delayed departures, and inability to make it safely back to Honolulu because of bad weather. When cyclones encounter land, their intense rains and high winds can cause severe property damage, loss of life, soil erosion, and flooding. Associated storm surge, the large volume of ocean water pushed toward shore by cyclones' strong winds, can cause severe flooding and destruction.

Status:

Eastern North Pacific. Overall, the 2018 eastern Pacific hurricane season featured well above average activity. There were 22 named storms, of which 12 became hurricanes and 9 became major hurricanes - category 3 or higher on the Saffir-Simpson Hurricane Wind Scale. This compares to the long-term averages of 15 named storms, 8 hurricanes, and 4 major hurricanes. There were also 3 tropical depressions that did not reach tropical storm strength. In terms of Accumulated Cyclone Energy (ACE), which measures the strength and duration of tropical storms and hurricanes, activity in the basin in 2018 was the 3rd highest on record, behind 1990 and 1992. Summary inserted from https://www.nhc.noaa.gov/text/MIATWSEP.shtml.

Central North Pacific. Tropical cyclone activity in 2018 was high. The ACE index was the second highest since 1980, second only to 2015, and well above the 1981 - 2010 average of just under 20 (x 10^4 knots²). Of note was Hurricane Lane, which reached Category 5 strength and passed within 110 miles of Honolulu. Lane was only the second Category 5 hurricane to pass within 250 miles of Hawaii, with the last being Hurricane John in 1994. Some of the impacts associated with Hurricane Lane include widespread reports of more than 40 inches of rain the islands of Hawaii and Kauai. There was one preliminary report of more than 52 inches of rain. At least one fatality was blamed on Hurricane Lane. Summary inserted from https://www.ncdc.noaa.gov/sotc/tropical-cyclones/201808.

Western North Pacific. Tropical cyclone activity was roughly average. The ACE Index was slightly above average in the Western North Pacific. Of note was Super Typhoon Yutu which made landfall on the islands of Tinian and Saipan as a Category 5 equivalent typhoon with estimated winds of 180 mph and a central minimum pressure of 905 mb. This marked the second strongest tropical cyclone to impact any U.S. territory on record. The storm devastated most of Tinian and Saipan with nearly every structure on the two islands being damaged or destroyed, including the Saipan International Airport. There were two fatalities reported in the Northern Marianas. Summary inserted from https://www.ncdc.noaa.gov/sotc/tropical-cyclones/201810.

South Pacific. Tropical cyclone activity and the ACE Index were below average in 2018.

Description: This indicator uses historical data from the NOAA National Climate Data Center (NCDC) International Best Track Archive for Climate Stewardship to track the number of tropical cyclones in the western, central, eastern, and southern Pacific basins. This indicator also monitors the Accumulated Cyclone Energy (ACE) Index and the Power Dissipation Index which are two ways of monitoring the frequency, strength, and duration of tropical cyclones based on wind speed measurements.

The annual frequency of storms passing through each basin is tracked and a stacked time series plot shows the representative breakdown of Saffir-Simpson hurricane categories.

Every cyclone has an ACE Index value, which is a number based on the maximum wind speed measured at six-hourly intervals over the entire time that the cyclone is classified as at least a tropical storm (wind speed of at least 34 knots; 39 mph). Therefore, a storm's ACE Index value accounts for both strength and duration. This plot shows the historical ACE values for each hurricane/typhoon season and has a horizontal line representing the average annual ACE value.

Timeframe: Annual.

Region/Location:

Eastern North Pacific: east of 140° W, north of the equator.

Central North Pacific: 180° - 140° W, north of the equator.

Western North Pacific: west of 180°, north of the equator.

South Pacific: south of the equator.

Measurement Platform: Satellite.

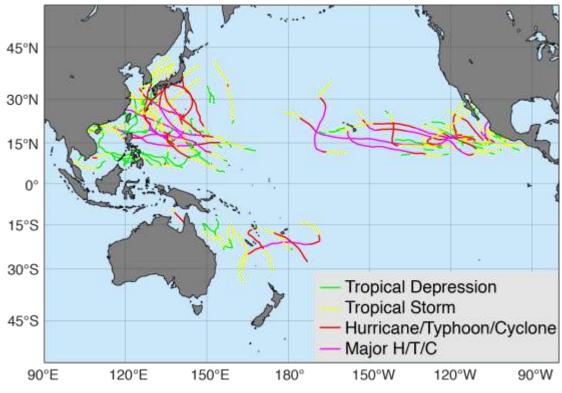


Figure 31. 2018 Pacific basin tropical cyclone tracks

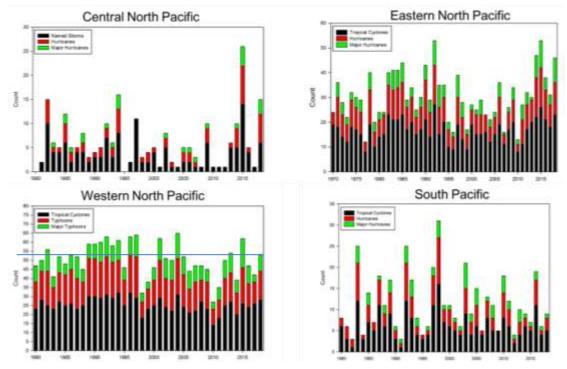


Figure 32. 2018 tropical storm totals by region

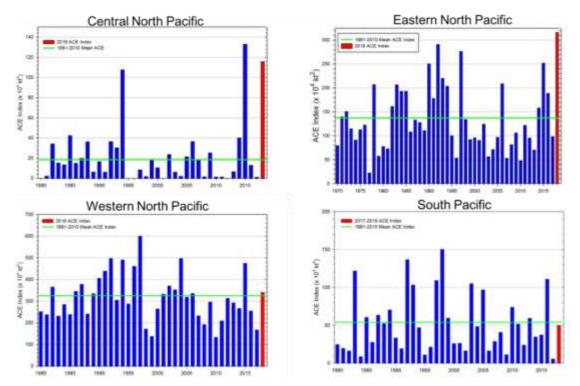


Figure 33. 2018 Accumulated Cyclone Energy (ACE) Index by region

2.5.4.6 Sea Surface Temperature and Anomaly

Rationale: Sea surface temperature is one of the most directly observable existing measures for tracking increasing ocean temperatures. SST varies in response to natural climate cycles such as the El Niño – Southern Oscillation (ENSO) and is projected to rise as a result of anthropogenic climate change. Both short-term variability and long-term trends in SST impact the marine ecosystem. Understanding the mechanisms through which organisms are impacted and the time scales of these impacts is an area of active research.

Status: Annual mean SST was 28.26°C in 2018. Over the period of record, annual SST has increased at a rate of 0.022° C/year. Monthly SST values in 2018 ranged from $27.02 - 29.17^{\circ}$ C, within the climatological range of $25.48 - 30.43^{\circ}$ C. The annual anomaly was 0.188° C hotter than average, with intensification in the northern islands.

Note that from the top to bottom in **Error! Reference source not found.**, panels show climatological SST (1982-2017), 2018 SST anomaly, time series of monthly mean SST, and time series of monthly SST anomaly. The white box in the upper panels indicates the area over which SST is averaged for the time series plots.

Description: Satellite remotely-sensed monthly sea surface temperature (SST) is averaged across the Marianas Grid $(13^{\circ} - 21^{\circ}N, 144^{\circ} - 146^{\circ}E)$. A time series of monthly mean SST averaged over the American Samoa Grid Region is presented. Additionally, spatial climatology and anomalies are shown. Data from NOAA Pathfinder v5.3 (NOAA 2019c).

Timeframe: Monthly.

Region/Location: Marianas Grid (13° – 21°N, 144° – 146°E).

Measurement Platform: Satellite.

Sourced from: NOAA OceanWatch (2018).

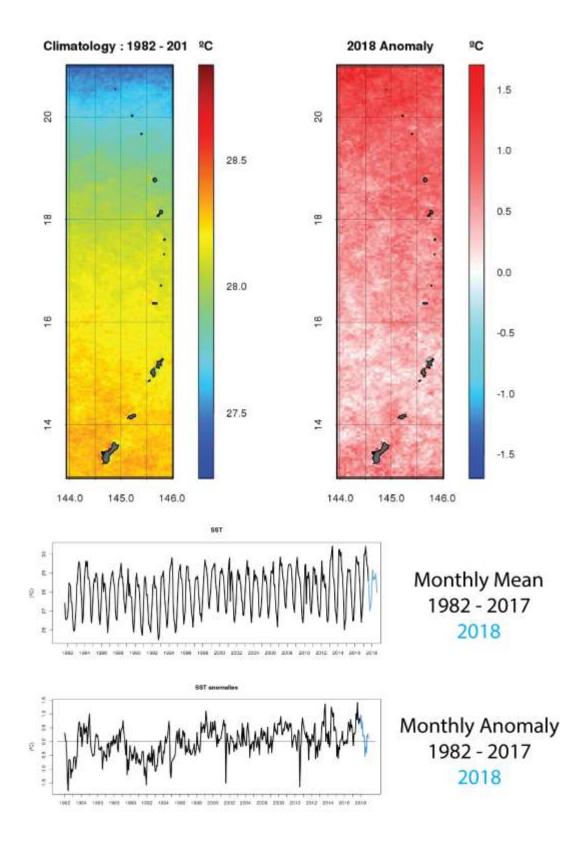


Figure 34. Sea surface temperature climatology and anomalies from 1982-2018

2.5.4.7 Coral Thermal Stress Exposure: Degree Heating Weeks

Rationale: Degree heating weeks are one of the most widely used metrics for assessing exposure to coral bleaching-relevant thermal stress.

Status: After a series of stress events in 2013, 2014, 2016, and 2017, the Marianas have shown no significant coral heat stress since.

Description: Here we present a metric of exposure to thermal stress that is relevant to coral bleaching. Degree Heating Weeks (DHW) measure time and temperature above a reference 'summer maximum', presented as rolling sum weekly thermal anomalies over a 12-week period. Higher DHW measures imply a greater likelihood of mass coral bleaching or mortality from thermal stress.

The NOAA Coral Reef Watch program uses satellite data to provide current reef environmental conditions to quickly identify areas at risk for <u>coral bleaching</u>. Bleaching is the process by which corals lose the symbiotic algae that give them their distinctive colors. If a coral is severely bleached, disease and death become likely.

The NOAA Coral Reef Watch (CRW) daily 5-km satellite coral bleaching Degree Heating Week (DHW) product presented here shows accumulated heat stress, which can lead to coral bleaching and death. The scale goes from 0 to 20 °C-weeks. The DHW product accumulates the instantaneous bleaching heat stress (measured by Coral Bleaching HotSpots) during the most-recent 12-week period. It is directly related to the timing and intensity of coral bleaching. Significant coral bleaching usually occurs when DHW values reach 4 °C-weeks. By the time DHW values reach 8 °C-weeks, widespread bleaching is likely and significant mortality can be expected (NOAA Coral Reef Watch 2019).

Timeframe: 2013-2018, Daily data.

Region/Location: Global.

Measurement Platform: <u>NOAA/NESDIS</u> operational daily global 5km geostationary-polarorbiting (Geo-Polar) Blended Night-only SST Analysis

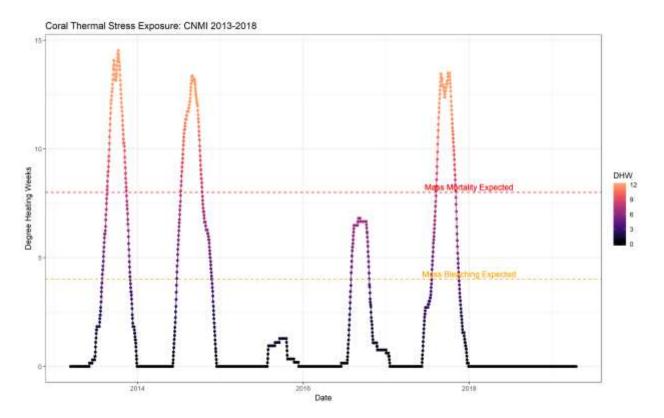


Figure 35. Coral Thermal Stress Exposure measured at CNMI Virtual Station 2013-2018 (Coral Reef Watch Degree Heating Weeks)

2.5.4.8 Chlorophyll-A and Anomaly

Rationale: Chlorophyll-A is one of the most directly observable measures we have for tracking increasing ocean productivity.

Status: Annual mean Chl-A was 0.054 mg/m^3 in 2018. Over the period of record, annual Chl-A has shown weak but significant linear decrease at a rate of 0.00014 mg/m^3 . Monthly Chl-A values in 2018 ranged from $0.051-0.059 \text{ mg/m}^3$, within the climatological range of $0.041 - 0.088 \text{ mg/m}^3$. The annual anomaly was essentially in line with climatological values -- 0.003 mg/m^3 higher than average.

Description: Chlorophyll-A Concentration from 1998-2018, derived from the MODIS Ocean Color sensor aboard the NASA Aqua Satellite. A monthly climatology was generated across the entire period (1982-2018) to provide both a 2018 spatial anomaly, and an anomaly time series.

The following text was inserted from the OceanWatch Central Pacific Node (NOAA 2019a). The MODIS (Moderate Resolution Imaging Spectro-radiometer) sensor was deployed onboard the NASA Aqua satellite. It is a multi-disciplinary sensor providing data for the ocean, land, aerosol, and cloud research and is used for detecting chlorophyll-a concentrations in the world's oceans, among other applications. Aqua MODIS views the entire Earth's surface every two days, acquiring data in 36 spectral bands. The data available here is the latest reprocessing from June 2015, which NASA undertook to correct for some sensor drift issues.

Timeframe: 2003-2018, Daily data available, Monthly means shown.

Region/Location: Global.

Measurement Platform: MODIS sensor on NASA Aqua Satellite

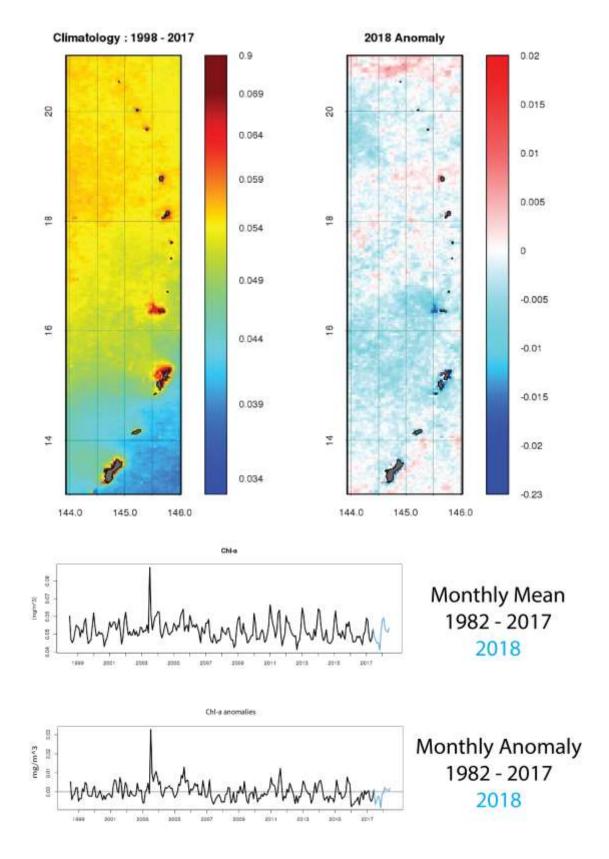


Figure 36. Chlorophyll-A (Chl-A) and Chl-A Anomaly from 1982-2018

2.5.4.9 Rainfall (CMAP Precipitation)

Rationale: Rainfall may have substantive effects on the nearshore environment and is a potentially important co-variate with the landings of particular stocks.

Description: The CPC Merged Analysis of Precipitation (CMAP) is a technique which produces pentad and monthly analyses of global precipitation in which observations from rain gauges are merged with precipitation estimates from several satellite-based algorithms, such as infrared and microwave (NOAA 2002). The analyses are on a 2.5 x 2.5 degree latitude/longitude grid and extend back to 1979. CMAP Precipitation data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at <u>https://www.esrl.noaa.gov/psd/</u>. The data are comparable (but should not be confused with) similarly combined analyses by the <u>Global</u> <u>Precipitation Climatology Project</u> described in Huffman et al. (1997).

It is important to note that the input data sources to make these analyses are not constant throughout the period of record. For example, SSM/I (passive microwave - scattering and emission) data became available in July 1987; prior to that the only microwave-derived estimates available are from the MSU algorithm (Spencer1993) which is emission-based thus precipitation estimates are available only over oceanic areas. Furthermore, high temporal resolution IR data from geostationary satellites (every 3-hr) became available during 1986; prior to that, estimates from the OPI technique (Xie and Arkin 1997) are used based on OLR from orbiting satellites.

The merging technique is thoroughly described in Xie and Arkin (1997). Briefly, the methodology is a two-step process. First, the random error is reduced by linearly combining the satellite estimates using the maximum likelihood method, in which case the linear combination coefficients are inversely proportional to the square of the local random error of the individual data sources. Over global land areas the random error is defined for each time period and grid location by comparing the data source with the rain gauge analysis over the surrounding area. Over oceans, the random error is defined by comparing the data sources are blended in the second step using the blending technique of Reynolds (1988).

Timeframe: Monthly.

Region/Location: Global.

Measurement Platform: *In-situ* station gauges and satellite data.

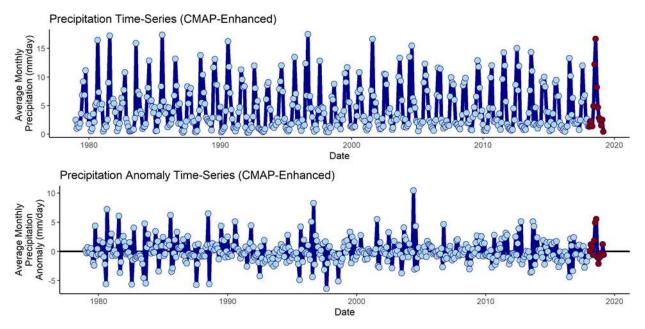


Figure 37. CMAP precipitation across the Marianas Grid with 2018 values in red

2.5.3.9 Sea Level (Sea Surface Height and Anomaly)

Rationale: Rising sea levels can result in a number of coastal impacts, including inundation of infrastructure, increased damage resulting from storm-driven waves and flooding, and saltwater intrusion into freshwater supplies.

Description: Monthly mean sea level time series, including extremes

Timeframe: Monthly

Region/Location: Observations from selected sites within the Samoan Archipelago

Measurement Platform: Satellite and *in situ* tide gauges

2.5.3.9.1 Basin-Wide Perspective

This image of the mean sea level anomaly for March 2019 compared to 1993-2013 climatology from satellite altimetry provides a glimpse into how the current weak El Niño continues to affect sea level across the Pacific Basin. The image captures the fact that sea level continues to be lower in the Western Pacific and higher in the Central and Eastern Pacific (a standard pattern during El Niño events - this basin-wide perspective provides a context for the location-specific sea level/sea surface height images that follow).

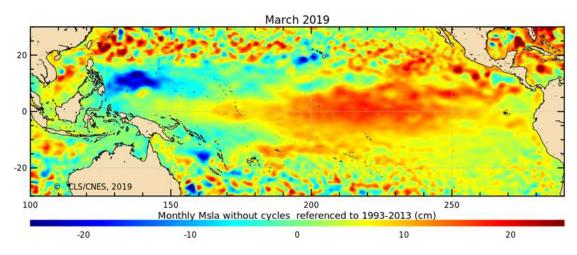
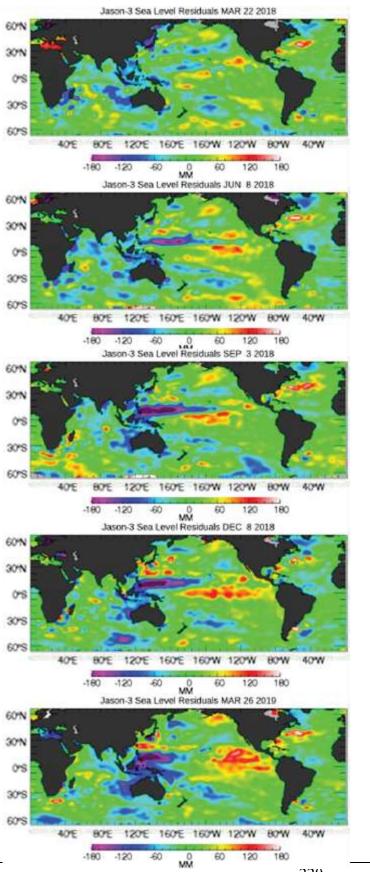
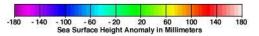




Figure 38a. Sea surface height and anomaly

Figure 38b. Quarterly time series of mean sea level anomalies during 2018 show no pattern of El Niño throughout the year according to satellite altimetry measurements of sea level height (unlike 2015).

http://sealevel.jpl.nasa.gov/science/eln inopdo/latestdata/archive/index.cfm?y =2017)

2.5.3.9.2 Local Sea Level

These time-series from *in situ* tide gauges provide a perspective on sea level trends within each Archipelago (Tide Station Time Series from NOAA/COOPS).

The following figures and descriptive paragraphs were inserted from NOAA (2018). Figure 31 shows the monthly mean sea level without the regular seasonal fluctuations due to coastal ocean temperatures, salinities, winds, atmospheric pressures, and ocean currents. The long-term linear trend is also shown, including its 95% confidence interval. The plotted values are relative to the most recent Mean Sea Level datum established by CO-OPS. The calculated trends for all stations are available as a table in millimeters/year and in feet/century. If present, solid vertical lines indicate times of any major earthquakes in the vicinity of the station and dashed vertical lines bracket any periods of questionable data or datum shift.

The relative sea level rise trend is 3.68 millimeters/year with a 95% confidence interval of +/- 3.98 mm/yr based on monthly mean sea level data from 1993 to 2018 which is equivalent to a change of 1.21 feet in 100 years. Trend for 1948-1993 is -0.85 +/- 1.76 mm/yr.

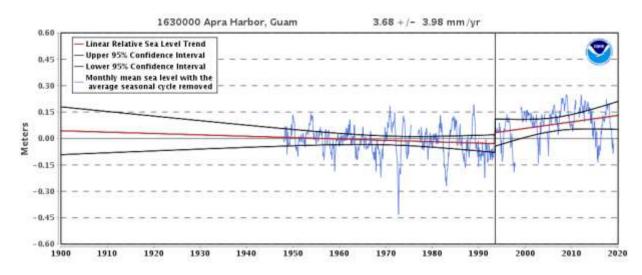


Figure 39. Monthly mean sea level without regular seasonal variability due to coastal ocean temperatures, salinities, winds, atmospheric pressures, and ocean currents

2.5.5 References

- Aviso, 2019. El Niño Bulliten Latest plots. Ocean indicator products, Center for Topographic Studies of the Ocean and Hydrosphere, Centre National D'études Spatiales. Available at <u>https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-products/el-ninobulletin.html</u>. Updated April 2019.
- Fabry, V.J., Seibel, B.A., Feely, R.A., and J.C. Orr, 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. *ICES Journal of Marine Science*, 65, pp. 414-432.
- Feely, R.A., Alin, S.R., Carter, B., Bednarsek, N., Hales, B., Chan, F., Hill, T.M., Gaylord, B., Sanford, E., Byrne, R.H., Sabine, C.L., Greeley, D., and L. Juranek, 2016. Chemical and biological impacts of ocean acidification along the west coast of North America. *Estuarine, Coastal and Shelf Science*, 183, pp. 260-270. doi: 10.1016/j.ecss.2016.08.043.
- Huffman, G.J., Adler, R.F., Arkin, P., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., McNab, A., Rudolf, B. and U. Schneider, 1997. The global precipitation climatology project (GPCP) combined precipitation dataset. *Bulletin of the American Meteorological Society*, 78(1), pp.5-20.
- Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.K., Hnilo, J.J., Fiorino, M. and G.L. Potter, 2002. NCEP–DOE AMIP-II Reanalysis (R-2), *B. Am. Meteorol. Soc.*, *83*, pp. 1631–1643,
- Keeling, C.D., Bacastow, R.B., Bainbridge, A.E., Ekdahl, C.A., Guenther, P.R., and L.S. Waterman, 1976. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. *Tellus*, 28, pp. 538-551.
- Knapp, K.R., M.C. Kruk, D.H. Levinson, H.J. Diamond, and C.J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. *Bulletin of the American Meteorological Society*, 91, pp. 363-376. doi:10.1175/2009BAMS2755.1.
- Li, X., Pichel, W.G., Clemente-Colón, P., and J.F. Sapper, 2001a. Deriving the operational nonlinear multi-channel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3, *Int. J. Remote Sens.*, 22(4), pp. 699 704.
- Li, X., Pichel, W.G., Clemente-Colón, P., Krasnopolsky, V., and J.F Sapper, 2001b. Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR Data, *Int. J. Remote Sens.*, 22(7), pp. 1285-1303.
- Liu, G., Heron, S.F., Eakin, C.M., Muller-Karger, F.E., Vega-Rodriguez, M., Guild, L.S., De La Cour, J.L., Geiger, E.F., Skirving, W.J., Burgess, T.F. and A.E. Strong, 2014. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. *Remote Sensing*, 6(11), pp.11579-11606.
- Mantua, N., 2018. The Pacific Decadal Oscillation. Available at <u>http://research.jisao.washington.</u> <u>edu/pdo/</u>. Accessed March 2018.

- Mélin, F., V. Vantrepotte, A. Chuprin, M. Grant, T. Jackson, and S. Sathyendranath, 2017.
 "Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data." *Remote sensing of environment*, 203, pp. 139-151.
- NOAA, 2002. CPC Merged Analysis of Precipitation. National Weather Service, National Centers for Environmental Prediction, Climate Prediction Ccenter. Available at <u>https://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.cmap.html</u>. Updated 25 September 2002.
- NOAA, 2018. Sea level Trends. NOAA Tides & Currents. Available at <u>https://tidesandcurrents.</u> <u>noaa.gov/sltrends/sltrends_station.shtml?stnid=1770000</u>. Updated 8 August 2018.
- NOAA, 2019a. Chlorophyll a Concentration, Aqua MODIS. OceanWatch Central Pacific Node. NASA/GSFC/OBPG. Available at <u>https://oceanwatch.pifsc.noaa.gov/</u> <u>contact.html</u>. Updated 21 February 2019.
- NOAA, 2019b. Full Mauna Loa CO₂ record. Trends in Atmospheric Carbon Dioxide. NOAA Earth System Research Laboratoary, Global Monitoring Division. Available from <u>https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html</u>. Updated 28 May 2019.
- NOAA, 2019c. Sea Surface Temperature Datasets. AVHRR Pathfinder v.5, AVRR GAC v.5, and GOES-POES v.5. OceanWatch – Central Pacific Node. NASA/GSFC/OBPG. Available at <u>https://oceanwatch.pifsc.noaa.gov/contact.html</u>. Updated 21 February 2019.
- NOAA Coral Reef Watch, 2019, updated daily. Version 3.1 Daily Global 5-km Satellite Coral Bleaching Degree Heating Week Product, 2013-2018. College Park, Maryland, USA: NOAA Coral Reef Watch. Available at <u>https://coralreefwatch.noaa.gov/satellite/hdf</u>/<u>index.php</u>.
- NOAA NCEI, 2019. State of the Climate: Hurricanes and Tropical Storms for Annual 2018. Available from <u>http://www.ncdc.noaa.gov/sotc/ tropical-cyclones/201713</u>. Accessed 30 March 30, 2018.
- NOAA PMEL, 2019. A primer on pH. NOAA Pacific Marine Environmental Laboratory, Carbon Program. Available at <u>https://www.pmel.noaa.gov/co2/story/A+primer+on+pH</u>.
- Reynolds, R.W., 1988. A real-time global sea surface temperature analysis. *Journal of Climate*, *1*(1), pp. 75-87.
- Savchenko, A., Ouzounov, D., Ahmad, S., Acker, J., Leptoukh, G., Koziana, J., and D. Nickless, 2004. Terra and Aqua MODI products available from NASA GES DAAC. *Advances in Space Research*, *34*(4), pp. 710-714.
- Spencer, R.W., 1993. Global oceanic precipitation from the MSU during 1979—91 and comparisons to other climatologies. Journal of Climate, 6(7), pp.1301-1326.

- State of Environmental Conditions in Hawaii and the U.S. Affiliated Pacific Islands under a Changing Climate, 2017. Coordinating Authors: J.J. Marra and M.C. Kruk. Contributing Authors: M. Abecassis; H. Diamond; A. Genz; S.F. Heron; M. Lander; G. Liu; J. T. Potemra; W.V. Sweet; P. Thompson; M.W. Widlansky; and P. Woodworth-Jefcoats. September, 2017. NOAA NCEI.
- Stowe, L.L., Davis, P.A., and E.P. McClain, 1999. Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the advanced very high resolution radiometer. *J. Atmos. Oceanic Technol.*, *16*, pp. 656-681.
- Thoning, K.W., Tans, P.P., and W.D. Komhyr, 1989. Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974-1985. *Journal of Geophysical Research*, 94, pp. 8549-8565.
- Walton C.C., Pichel, W.G., Sapper, J.F., and D.A. May, 1998. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites, *J. Geophys. Res.*, 103(C12), pp. 27999-28012.
- Xie, P. and P.A. Arkin, 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. *Bulletin of the American Meteorological* Society, 78(11), pp. 2539-2558.

2.6 ESSENTIAL FISH HABITAT

2.6.1 Introduction

The Magnuson-Stevens Fishery Conservation and Management Act (MSA) includes provisions concerning the identification and conservation of essential fish habitat (EFH), and under the EFH final rule, habitat areas of particular concern (HAPC) (50 Code of Federal Regulations [CFR] 600.815). The MSA defines EFH as "those waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity." HAPC are those areas of EFH identified pursuant to 50 CFR 600.815(a)(8), and meeting one or more of the following considerations: (1) ecological function provided by the habitat is important; (2) habitat is sensitive to human-induced environmental degradation; (3) development activities are, or will be, stressing the habitat type; or (4) the habitat type is rare.

The National Marine Fisheries Service (NMFS) and regional fishery management councils must describe and identify EFH in fishery management plans (FMPs), minimize to the extent practicable the adverse effects of fishing on EFH, and identify other actions to encourage the conservation and enhancement of EFH. Federal agencies that authorize, fund, or undertake actions that may adversely affect EFH must consult with NMFS, and NMFS must provide conservation recommendations to federal and state agencies regarding actions that would adversely affect EFH. Regional fishery management councils also have the authority to comment on federal or state agency actions that would adversely affect the habitat, including EFH, of managed species.

The EFH Final Rule strongly recommends regional fisheries management councils and NMFS to conduct a review and revision of the EFH components of fisheries management plans every five years (600.815(a)(10)). The council's FEPs state that new EFH information should be reviewed, as necessary, during preparation of the annual reports by the Plan Teams. Additionally, the EFH Final Rule states, "Councils should report on their review of EFH information as part of the annual Stock Assessment and Fishery Evaluation (SAFE) report prepared pursuant to §600.315(e)." The habitat portion of the annual report is designed to meet the FEP requirements and EFH Final Rule guidelines regarding EFH reviews.

National Standard 2 guidelines recommend that the SAFE report summarize the best scientific information available concerning the past, present, and possible future condition of EFH described by the FEPs.

2.6.1.1 EFH Information

The Western Pacific Regional Fishery Management Council (Council) FMPs include identification and description of EFH, lists of prey species and locations for each managed species, and optionally, HAPC. Impact-oriented components of FMPs include federal fishing activities that may adversely affect EFH; non-federal fishing activities that may adversely affect EFH; non-fishing activities that may adversely affect EFH; conservation and enhancement recommendations; and a cumulative impacts analysis on EFH. The last two components include the research and information needs section that feeds into the Council's Five Year Research Priorities and the EFH update procedure that is described in the FEP. The Council has described EFH for five management unit species (MUS) under its management authority: pelagic (PMUS), bottomfish (BMUS), crustaceans (CMUS), coral reef ecosystem (CREMUS), and precious corals (PCMUS).

EFH reviews of the biological components, including the description and identification of EFH, lists of prey species and locations, and HAPC, consist of three to four parts:

- Updated species descriptions, which can be found appended to the SAFE report. These can be used to directly update the FEP;
- Updated EFH levels of information tables, which can be found in Section 2.6.4;
- Updated research and information needs, which can be found in Section 2.6.5. These can be used to directly update the FEP; and
- An analysis that distinguishes EFH from all potential habitats used by the species, which is the basis for an options paper for the Council. This part is developed if enough information exists to refine EFH.

2.6.1.2 Habitat Objectives of FEP

The habitat objective of the FEP is to refine EFH and minimize impacts to EFH, with the following sub-objectives:

- Review EFH and HAPC designations every five years based on the best available scientific information and update such designations based on the best available scientific information, when available, and
- Identify and prioritize research to: assess adverse impacts to EFH and HAPC from fishing (including aquaculture) and non-fishing activities, including, but not limited to, activities that introduce land-based pollution into the marine environment.

This annual report reviews the precious coral EFH components and non-fishing impacts components, resetting the five-year timeline for review. The Council's support of non-fishing activities research is monitored through the program plan and five year research priorities.

2.6.1.3 Response to Previous Council Recommendations

At its 172nd meeting in March 2018, the Council recommended that staff develop an omnibus amendment updating the non-fishing impact to EFH sections of the FEPs, incorporating the non-fishing impacts EFH review report by Minton (2017) by reference. An options paper has been developed. The CNMI Joint Advisory Group provided comments on the non-fishing impacts review at a meeting held November 15, 2017, in Garapan. The Guam Joint Advisory Group also reviewed the report at their meeting held on November 17, 2017, in Tumon.

At its 173rd meeting in June 2018, the Council directed staff to develop options to redefine EFH and any HAPC for precious corals in Hawaii for Council consideration for an FEP amendment.

At its 174th meeting in October 2018, the Council directed staff to prepare an amendment to the Hawaii FEP to revise the Precious Corals EFH and selected the following preliminarily preferred options for the staff to further analyze:

- Action 1: Option 4 Revise existing beds and designate new beds as EFH
- Action 2: Option 2 Update Geographic Extent and Habitat Characteristics
- Action 3: Option 1 Update the FEP narratives

An FEP amendment is being developed to present to the Council in mid-2019.

2.6.2 Habitat Use by MUS and Trends in Habitat Condition

The Mariana Archipelago is a chain of islands in the western Pacific roughly oriented northsouth. It is anchored at the southern end by the relatively large island of Guam at 13.5° north latitude. The Commonwealth of the Northern Mariana Islands (CNMI) stretch off to the north. The entire chain is approximately 425 miles long. The archipelago was named by Spanish explorers in the 16th Century in honor of Spanish Queen Mariana of Austria.

The total land area of Guam is approximately 212 square miles and its EEZ is just over 84,000 square miles. The CNMI consists of 14 main islands. From north to south these are: Farallon de Pajaros, Maug, Asuncion, Agrihan, Pagan, Alamagan, Guguan, Sarigan, Anatahan, Farallon de Medinilla, Saipan, Tinian, Aguijan, and Rota. Only Saipan, Rota, and Tinian are permanently inhabited, with 90% of the population residing on the island of Saipan. The total land area of the CNMI is 176.5 square miles and its EEZ is almost 300,000 square miles.

Guam and the southern islands of the CNMI are limestone, with level terraces and fringing coral reefs. The CNMI's northern islands are volcanic and sparsely inhabited, with active volcanoes on several islands, including Anatahan, Pagan, and Agrihan (the highest, at 3,166 feet). The archipelago has a tropical maritime climate moderated by seasonal northeast trade winds. While there is little seasonal temperature variation, there is a dry season (December to June) and a rainy season (July to November). The rainy season coincides with hurricane season, and the Mariana Archipelago is periodically impacted by powerful typhoons.

The Mariana Trench is located to the east of the chain and includes the deepest point in the world's oceans. The vertical measurement from the seafloor to Mount Tapotchau is 37,752 ft.

Essential fish habitat in the Marianas for the four MUS comprises all substrate from the shoreline to the 700 m isobath. The entire water column is described as EFH from the shoreline to the 700 m isobath, and the water column to a depth of 400 m is described as EFH from the 700 m isobath to the limit or boundary of the EEZ. While the coral reef ecosystems surrounding the islands in the Marianas have been subject to monitoring program through PIFSC CRED biennially since 2003, surveys are focused on the nearshore environments surrounding the islands (PIFSC 2010).

The mission of the PIFSC CREP is to "provide high-quality, scientific information about the status of coral reef ecosystems of the U.S. Pacific islands to the public, resource managers, and policymakers on local, regional, national, and international levels" (PIFSC 2011). CREP's Reef Assessment and Monitoring Program (RAMP) conducts comprehensive ecosystem monitoring surveys at about 50 island, atoll, and shallow bank sites in the Western Pacific region on a one-to three-year schedule (Brainard et al. 2008). CREP coral reef monitoring reports provide the most comprehensive description of nearshore habitat quality in the region. The benthic habitat mapping program provides information on the quantity of habitat.

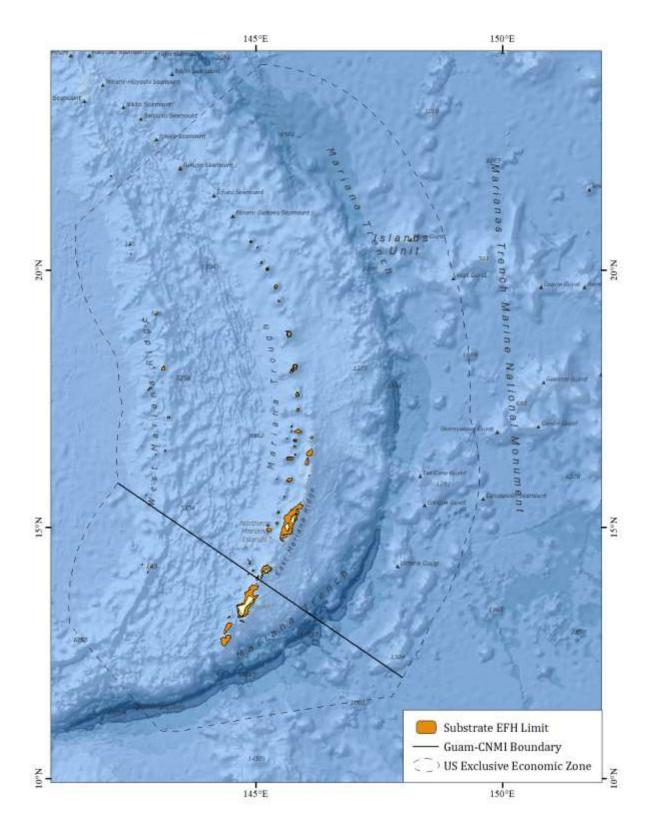


Figure 40. Substrate EFH Limit of 700 m isobath around the Mariana Archipelago (from Ryan et al. 2009)

2.6.2.1 Habitat Mapping

Interpreted IKONOS benthic habitat maps in the 0-30 m depth range have been completed for all islands in the CNMI (Miller et al., 2011). Mapping products for the Marianas are available from the Pacific Islands Benthic Habitat Mapping Center.

Depth Range	Timeline/Mapping Product	Progress	Source
0-30 m	IKONOS Benthic Habitat Maps	All Islands	Miller et al. (2011)
	2000-2010 Bathymetry	70%	DesRochers (2016)
	2011-2015 Multibeam Bathymetry	-	DesRochers (2016)
	2011-2015, Satellite Worldview 2 Bathymetry	15%	DesRochers (2016)
30-150 m	2000-2010 Bathymetry	85%	DesRochers (2016)
	2011-2015 Multibeam Bathymetry	-	DesRochers (2016)
15-2000 m	Multibeam Bathymetry	Complete around all islands except Guam, Rota, and Agrigan	Pacific Islands Benthic Habitat Mapping Center
Derived Products		Backscatter available for all 60 m multibeam Geomorphology products – see website	Pacific Islands Benthic Habitat Mapping Center

Table 71. Summary of habitat mapping in CNMI

The land and seafloor area surrounding the islands of the Marianas as well as primary data coverage are reproduced from Miller et al. (2011) in Figure 41.

ISLAND CODE	GUA	ROT	AGU	ΠN	SAI	FDM	ANA	SAR	GUG	ALA	PAG	AGR	ASC	MAU	FDP	OFF
SHAPE & RELATIVE SIZE	ſ	-	-	4	K	,	-	٠	•	•	۶	•	•	o	•	
LAND AREA (km²)	544	85	7	101	119	ľ	34	4	4	13	48	44	8	2	2	0
SEA FLOOR AREA 0-30 m {km²}	96	21	1	16	73	2	?	2	2	4	16	9	3	3	ä	237*
SEA FLOOR AREA 30-150 m (km²)	83	27	7	36	79	2	7	8	6	7	26	14	2	4	2	
BATHYMETRY 0-30 m (km²)	57	4	-	16	63	2	-	1	1	2	9	2	1	з	1	12
BATHYMETRY 30-150 m (km ³)	50	26	-	36	79	347	-	8	6	7	25	12	7	4	2	157
PTICAL COVERAGE 0-30 m (km)	54	26	14	27	80	0	21	14	12	15	39	25	11	29	15	35
PTICAL COVERAGE 30-150 m (km)	104	165	0	Ø	99	ø	0	99	101	105	0	90	103	m	0	44
	? un — no	known data	6)													
		ibers re	efer to	area fi	om 0-1	50 m										

Figure 41. CNMI Land and Seafloor Area and Primary Data Coverage

2.6.2.2 Benthic Habitat

Juvenile and adult life stages of coral reef MUS and crustaceans including spiny and slipper lobsters and Kona crab extends from the shoreline to the 100 m isobath (64 FR 19067, April 19, 1999). All benthic habitat is considered EFH for crustaceans species (64 FR 19067, April 19, 1999), while the type of bottom habitat varies by family for coral reef species (69 FR 8336, February 24, 2004). Juvenile and adult bottomfish EFH extends from the shoreline to the 400 m isobath (64 FR 19067, April 19, 1999), and juvenile and adult deepwater shrimp habitat extends from the 300 m isobath to the 700 m isobath (73 FR 70603, November 21, 2008).

2.6.2.2.1 RAMP Indicators

Benthic percent cover of coral, macroalgae, and crustose coralline algae from CRED are found in the following tables. CRED uses the benthic towed-diver survey method to monitor changes in benthic composition. In this method, "a pair of scuba divers (one collecting fish data, the other collecting benthic data) is towed about 1 m above the reef roughly 60 m behind a small boat at a constant speed of about 1.5 kt. Each diver maneuvers a towboard platform, which is connected to the boat by a bridle and towline and outfitted with a communications telegraph and various survey equipment, including a downward-facing digital SLR camera (Canon EOS 50D, Canon Inc., Tokyo). The benthic towed diver records general habitat complexity and type (e.g., spur and groove, pavement), percent cover by functional-group (hard corals, stressed corals, soft corals, macroalgae, crustose coralline algae, sand, and rubble), and for macroinvertebrates (crown-of-thorns sea stars, sea cucumbers, free and boring urchins, and giant clams).

Towed-diver surveys are typically 50 minutes long and cover about two to three kilometers of habitat. Each survey is divided into five-minute segments, with data recorded separately per segment to allow for later location of observations within the ~200-300 meter length of each segment. Throughout each survey, latitude and longitude of the survey track are recorded on the

small boat using a GPS; after the survey, diver tracks are generated with the GPS data and a layback algorithm that accounts for position of the diver relative to the boat. (PIFSC, 2016).

		v		1 0		
Year	2003	2005	2007	2009	2011	2014
Agrihan	16.03	15.45	13.68	16.03	19.83	
Aguijan	17.88	17.25	11.68	15.61	21.88	33.46
Alamagan	18.23	17.39	22.21	23.34	30.28	27.58
Anatahan	7.93					
Arakane	24.06	11.83				
Asuncion	18.15	15.58	15.66	18.57	28	40.56
Farallon de Pajaros	10.13	4.82	4.94	11.28	11.69	16.45
Guam	19.58	23.3	11.72	13.71	19.06	17.58
Guguan	23	10.18	26.58	24.97	30.23	37.23
Maug	26.86	21.43	26.25	28.09	38	46.17
Pagan	18.51	9.84	12.04	13.09	16.23	27.87
Pathfinder	24.17	24.75				
Rota	8.98	6.04	4.36	4.45	9.94	17.39
Saipan	20.85	10.63	10.18	10.18	13.73	24.99
Santa Rosa	7.31	7.8				
Sarigan	18.02	12.88	14.21	23.37	18.01	31.98
Stingray	54.86					
Supply	38.75					
Tatsumi	7.92					
Tinian	12.46	8.99	8.08	9.33	12.02	17.37

Table 72. Mean percent cover of live coral from RAMP sites collected from towed-diver
surveys in the Mariana Archipelago

Table 73. Mean percent cover of macroalgae from RAMP sites collected from towed-diversurveys in the Mariana Archipelago

Year	2003	2005	2007	2009	2011	2014
Agrihan	48.25	22.65	8.55	3.2	4.63	
Aguijan	44.56	38.81	28.31	20.8	21.52	25.1
Alamagan	41.21	26.03	15.65	15.47	12.81	8.33
Anatahan	14.31					
Arakane	52.26	45.75				
Asuncion	51.1	5.37	19.11	7.54	7.47	3.86
Farallon de	60.2	4.32	3.38	0.05	0.91	0.18
Pajaros						
Guam	46.19	52.67	43.22	26.82	29.61	41.64
Guguan	45	10.18	19.5	17	12.59	8.66
Maug	45.91	27.2	8.17	3.26	4.37	12.01
Pagan	45.96	18.4	16.74	9.84	7.36	19.3

Pathfinder	37.29	29				
Rota	54.34	56.05	38.76	30.95	35.16	29.33
Saipan	48.57	30.75	31.87	20.39	15.26	25.18
Santa Rosa	42.5	70.54				
Sarigan	42.23	23.95	16.47	12.51	9.41	11.55
Stingray	33.89					
Supply	19.17					
Tatsumi	67.22					
Tinian	46.94	56.38	39.95	30.4	25.92	34.91

Table 74. Mean percent cover of crustose coralline algae from RAMP sites collected from
towed-diver surveys in the Mariana Archipelago

Year	2003	2005	2007	2009	2011	2014
Agrihan	8.64	5.7	9.94	5.57	3.91	
Aguijan	14.69	10.59	12.67	7.32	11.47	18.33
Alamagan	7.63	4.85	10.29	5.33	4.29	6.25
Anatahan	7.72					
Arakane	5.28	3.58				
Asuncion	7.96	8.99	9.53	3.67	4.62	2.19
Farallon de	3.44	8.03	5.39	2.94	2.29	0.05
Pajaros						
Guam	12.75	4.04	8.54	6.13	9.39	6.9
Guguan	17.13	15	12.95	14.59	7.35	9.91
Maug	10.22	7.53	12.32	7.73	5.38	8.23
Pagan	6.61	12.41	14.16	8.42	6.33	2.48
Pathfinder	5.56	10				
Rota	18.39	4.56	12.42	5.22	6.67	5.49
Saipan	10.04	8.74	15.03	8.27	6.31	5.61
Santa Rosa	7.13	0.55				
Sarigan	10.64	3.24	7.58	3.84	2.59	4.57
Stingray	1.54					
Supply	35					
Tatsumi	6.11					
Tinian	6.25	5.18	16.16	4.07	7.59	5.96

2.6.2.3 Oceanography and Water Quality

The water column is also designated as EFH for selected MUS life stages at various depths. For larval stages of all species except deepwater shrimp, the water column is EFH from the shoreline to the EEZ. Coral reef species egg and larval EFH is to a depth of 100 m; crustaceans, 150m; and bottomfish, 400 m. Please see the Ecosystem and Climate Change section for information related to oceanography and water quality.

2.6.3 Report on Review of EFH Information

One EFH review was drafted this year; the review of the biological components of crustaceans EFH can be found in Appendix C.

2.6.4 EFH Levels

NMFS guidelines codified at 50 C.F.R. § 600.815 recommend Councils organize data used to describe and identify EFH into the following four levels:

Level 1: Distribution data are available for some or all portions of the geographic range of the species.

Level 2: Habitat-related densities of the species are available.

Level 3: Growth, reproduction, or survival rates within habitats are available.

Level 4: Production rates by habitat are available.

The Council adopted a fifth level, denoted Level 0, for situations in which there is no information available about the geographic extent of a particular managed species' life stage. The existing level of data for individual MUS in each fishery are presented in tables per fishery. In subsequent SAFE reports, each fishery section will include the description of EFH method, method used to assess the value of the habitat to the species, description of data sources used if there was analysis; and description of method for analysis.

2.6.4.1 Precious Corals

Essential Fish Habitat for precious corals was originally designated in Amendment 4 to the Precious Corals Fishery Management Plan (64 FR 19067, April 19, 1999), using the level of data found in the table.

Species	Pelagic Phase (Larval Stage)	Benthic Phase	Source(s)
Pink Coral (<i>Corallium</i>)			
Pleurocorallium secundum (prev. Corallium secundum)	0	1	Figueroa and Baco (2014); HURL Database
C. regale	0	1	HURL Database
Hemicorallium laauense (prev. C. laauense)	0	1	HURL Database
Gold Coral			
Kulamanamana haumeaae	0	1	Sinniger et al. (2013); HURL Database
Callogorgia gilberti	0	1	HURL Database
Narella spp.	0	1	HURL Database
Bamboo Coral			
Lepidisis olapa	0	1	HURL Database

 Table 75. Level of EFH information available for the Western Pacific PCMUS

Species	Pelagic Phase (Larval Stage)	Benthic Phase	Source(s)
Acanella spp.	0	1	HURL Database
Black Coral			
<i>Antipathes griggi</i> (prev. <i>Antipathes dichotoma</i>)	0	2	Opresko (2009); HURL Database
A. grandis	0	1	HURL Database
Myriopathes ulex (prev. A. ulex)	0	1	Opresko (2009); HURL Database

2.6.4.2 Bottomfish and Seamount Groundfish

Essential Fish Habitat for bottomfish and seamount groundfish was originally designated in Amendment 6 to the Bottomfish and Seamount Groundfish FMP (64 FR 19067, April 19, 1999).

Table 76. Level of EFH information available for Western Pacific BMUS and seamount groundfish MUS complexes

Life History Stage	Eggs	Larvae	Juvenile	Adult
Bottomfish: (scientific/English common)				
Aphareus rutilans (red snapper/silvermouth)	0	0	0	2
Aprion virescens (gray snapper/jobfish)	0	0	1	2
Caranx ignoblis (giant trevally/jack)	0	0	1	2
C. lugubris (black trevally/jack)	0	0	0	2
Epinephelus faciatus (blacktip grouper)	0	0	0	1
<i>E. quernus</i> (sea bass)	0	0	1	2
<i>Etelis carbunculus</i> (red snapper)	0	0	1	2
<i>E. coruscans</i> (red snapper)	0	0	1	2
Lethrinus amboinensis (ambon emperor)	0	0	0	1
L. rubrioperculatus (redgill emperor)	0	0	0	1
Lutjanus kasmira (blueline snapper)	0	0	1	1
Pristipomoides auricilla (yellowtail snapper)	0	0	0	2
P. filamentosus (pink snapper)	0	0	1	2
P. flavipinnis (yelloweye snapper)	0	0	0	2
P. seiboldi (pink snapper)	0	0	1	2
<i>P. zonatus</i> (snapper)	0	0	0	2
Pseudocaranx dentex (thicklip trevally)	0	0	1	2
Seriola dumerili (amberjack)	0	0	0	2
Variola louti (lunartail grouper)	0	0	0	2
Seamount Groundfish:				
Beryx splendens (alfonsin)	0	1	2	2
Hyperoglyphe japonica (ratfish/butterfish)	0	0	0	1
Pseudopentaceros richardsoni (armorhead)	0	1	1	3

2.6.4.3 Crustaceans

Essential Fish Habitat for crustaceans MUS was originally designated in Amendment 10 to the Crustaceans FMP (64 FR 19067, April 19, 1999). EFH definitions were also approved for deepwater shrimp through an amendment to the Crustaceans FMP in 2008 (73 FR 70603, November 21, 2008).

Life History Stage	Eggs	Larvae	Juvenile	Adult
Crustaceans: (English common\scientific)				
Spiny lobster (Panulirus marginatus)	2	1	1-2	2-3
Spiny lobster (Panulirus pencillatus)	1	1	1	2
Common slipper lobster (Scyllarides squammosus)	2	1	1	2-3
Ridgeback slipper lobster (Scyllarides haanii)	2	0	1	2-3
Chinese slipper lobster (Parribacus antarcticus)	2	0	1	2-3
Kona crab (Ranina ranina)	1	0	1	1-2

Table 77. Level of EFH information available for the Western Pacific crustacean MUS

2.6.4.4 Coral Reef

Essential Fish Habitat for coral reef ecosystem species was originally designated in the Coral Reef Ecosystem FMP (69 FR 8336, February 24, 2004). An EFH review of CREMUS will not be undertaken until the Council completes its process of re-designating certain CREMUS into the ecosystem component classification. Ecosystem component species do not require EFH designations, as they are not a managed species.

2.6.5 Research and Information Needs

Based, in part, on the information provided in the tables above the Council identified the following scientific data which are needed to more effectively address the EFH provisions:

2.6.5.1 All FMP Fisheries

- Distribution of early life history stages (eggs and larvae) of management unit species by habitat.
- Juvenile habitat (including physical, chemical, and biological features that determine suitable juvenile habitat).
- Food habits (feeding depth, major prey species etc.).
- Habitat-related densities for all MUS life history stages.
- Growth, reproduction, and survival rates for MUS within habitats.

2.6.5.2 Bottomfish Fishery

- Inventory of marine habitats in the EEZ of the Western Pacific region.
- Data to obtain a better SPR estimate for American Samoa's bottomfish complex.
- Baseline (virgin stock) parameters (CPUE, percent immature) for the Guam/NMI deep-water and shallow-water bottomfish complexes.

- High resolution maps of bottom topography/currents/water masses/primary productivity.
- Habitat utilization patterns for different life history stages and species.

2.6.5.3 Crustaceans Fishery

- Identification of post-larval settlement habitat of all CMUS.
- Identification of "source/sink" relationships in the NWHI and other regions (i.e. relationships between spawning sites settlement using circulation models, genetic techniques, etc.).
- Establish baseline parameters (CPUE) for the Guam/Northern Marinas crustacean populations.
- Research to determine habitat-related densities for all CMUS life history stages in American Samoa, Guam, Hawaii, and CNMI.
- High resolution mapping of bottom topography, bathymetry, currents, substrate types, algal beds, and habitat relief.

2.6.5.4 Precious Corals Fishery

• Distribution, abundance, and status of precious corals in the CNMI and Guam.

2.6.6 References

- 64 FR 19067. Fisheries Off West Coast States and in the Western Pacific; Pelagic Fisheries, Amendment 8; Crustacean Fisheries, Amendment 10; Bottomfish and Seamount Groundfish Fisheries, Amendment 6; Precious Corals Fisheries, Amendment 4, Rule. *Federal Register* 64 (19 April 1999): 19067-19069. Downloaded from <u>https://www.govinfo.gov/content/pkg/FR-1999-04-19/pdf/99-9728.pdf</u>.
- 69 FR 8336. Fisheries off West Coast States and in the Western Pacific; Coral Reef Ecosystems Fishery Management Plan for the Western Pacific, Final Rule. *Federal Register* 69 (24 February 2004): 8336-8349. Downloaded from <u>http://www.wpcouncil.org/precious/</u> <u>Documents/FMP/Amendment5-FR-FinalRule.pdf</u>.
- 73 FR 70603. Fisheries in the Western Pacific; Crustacean Fisheries; Deepwater Shrimp, Final Rule. *Federal Register* 73 (21 November 2008): 70603-70605. Downloaded from <u>https://www.govinfo.gov/content/pkg/FR-2008-11-21/pdf/E8-27773.pdf</u>.
- Brainard, R., Asher, J., Gove, J., Helyer, J., Kenyon, J., Mancini, F., Miller, J., Myhre, S., Nadon, M., Rooney, J., Schroeder, R., Smith, E., Vargas-Angel, B., Vogt, S., Vroom, P., Balwani, S., Craig, P., DesRochers, A., Ferguson, S., Hoeke, R., Lammers, M., Lundblad, E., Maragos, J., Moffitt, R., Timmers, M., and O. Vetter, 2008. Coral reef ecosystem monitoring report for American Samoa: 2002-2006. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 472 pp.
- DesRochers, A., 2016. "Benthic Habitat Mapping." NOAA Fisheries Center, Honolulu, HI. Presentation. Presented 6 April 2016.

- Figueroa, D.F. and A.R. Baco, 2014. Complete mitochondrial genomes elucidate phylogenetic relationships of the deep-sea octocoral families Coralliidae and Paragorgiidae. *Deep Sea Research Part II: Topical Studies in Oceanography*, *99*, pp.83-91.
- Hawaii Mapping Research Group, 2014. Main Hawaiian Islands Multibeam Bathymetry and Backscatter Synthesis. School of Ocean and Earth Science and Technology, University of Hawaii at Mānoa. <u>http://www.soest.hawaii.edu/HMRG/multibeam/index.php</u>. Updated 20 November 2014. Accessed April 4, 2016.
- McCoy, K., Heenan, A., Asher, J., Ayotte, P., Gorospe, K., Gray, A., Lino, K., Zamzowm J., and I. Williams, 2017. Pacific Reef Assessment and Monitoring Program Data Report: Ecological monitoring 2016 reef fishes and benthic habitats of the main Hawaiian Islands, Northwestern Hawaiian Islands, Pacific Remote Island Areas, and American Samoa. NOAA Pacific Islands Fisheries Science Center. PIFSC Data Report DR-17-001. 66 pp.
- Miller, J., Battista, T., Pritchett, A., Rohmann, S., and J. Rooney, 2011. Coral Reef Conservation Program Mapping Achievements and Unmet Needs. NOAA Coral Reef Conservation Program, Silver Spring, MD, 68 pp.
- Minton, D. 2017. Non-fishing effects that may adversely affect essential fish habitat in the Pacific Islands region, Final Report. NOAA National Marine Fisheries Service, Contract AB-133F-15-CQ-0014. 207 pp.
- Opresko, D.M., 2009. A New Name for the Hawaiian Antipatharian Coral Formerly Known as Antipathes dichotoma (Cnidaria: Anthozoa: Antipatharia) 1. Pacific Science, 63(2), pp.277-292.
- PIFSC, 2010. Coral reef ecosystems of the Mariana Archipelago: a 2003–2007 overview. NOAA Pacific Islands Fisheries Science Center, PIFSC Special Publication, SP-10-002, 38 pp.
- PIFSC, 2011. Coral reef ecosystems of American Samoa: a 2002–2010 overview. NOAA Fisheries Pacific Islands Fisheries Science Center, PIFSC Special Publication, SP-11-02, 48 pp.
- PIFSC, 2016. Pacific Islands Fisheries Science Center Ecosystem Sciences Coral Reef Ecosystem Survey Methods. Benthic Monitoring. <u>http://www.pifsc.noaa.gov/cred/</u> <u>survey_methods.php</u>. Updated 1 April 2016.Accessed 5 April 2016.
- Ryan, W.B.F., S.M. Carbotte, S.M., Coplan, J.O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and R. Zemsky, 2009.
 Global Multi-Resolution Topography synthesis, *Geochem. Geophys. Geosyst.*, 10, Q03014. doi: 10.1029/2008GC002332
- Sinniger, F., Ocana, O.V., and A.R. Baco, 2013. Diversity of zoanthids (Anthozoa: Hexacorallia) on Hawaiian seamounts: description of the Hawaiian gold coral and additional zoanthids. *PloS one*, *8*(1), p.e52607.

2.7 MARINE PLANNING

2.7.1 Introduction

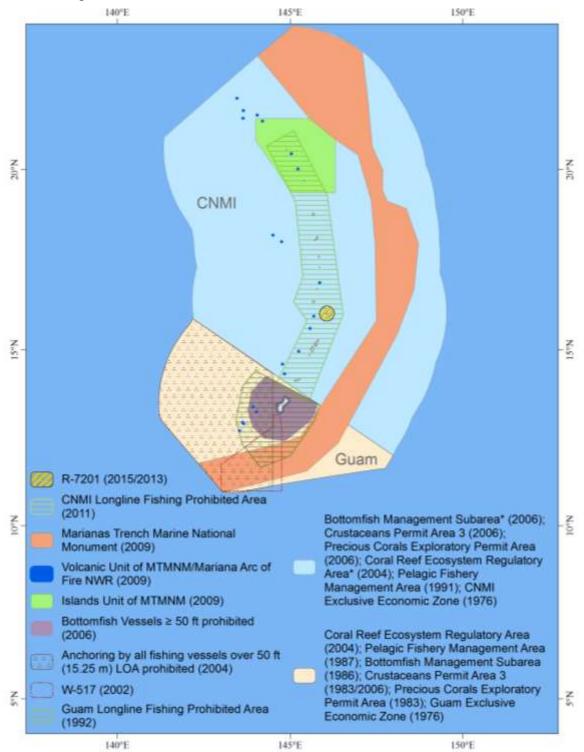
Marine planning is a science-based management tool being utilized regionally, nationally and globally to identify and address issues of multiple human uses, ecosystem health and cumulative impacts in the coastal and ocean environment. The Council's efforts to formalize incorporation of marine planning in its actions began in response to Executive Order (EO) 13547, *Stewardship of the Ocean, Our Coasts, and the Great Lakes*. EO 13158, *Marine Protected Areas*, proposes that agencies strengthen the management, protection, and conservation of existing MPAs, develop a national system of MPAs representing diverse ecosystems, and avoid causing harm to MPAs through federal activities. MPAs, or marine managed areas (MMAs) are one tool used in fisheries management and marine planning.

At its 165th meeting in March 2016, in Honolulu, Hawai`i, the Council approved the following objective for the FEPs: Consider the Implications of Spatial Management Arrangements in Council Decision-making. The following sub-objectives apply:

- Identify and prioritize research that examines the positive and negative consequences of areas that restrict or prohibit fishing to fisheries, fishery ecosystems, and fishermen, such as the Bottomfish Fishing Restricted Areas (BRFAs), military installations, NWHI restrictions, and Marine Life Conservation Districts (MLCDs).
- Establish effective spatially-based fishing zones.
- Consider modifying or removing spatial-based fishing restrictions that are no longer necessary or effective in meeting their management objectives.
- As needed, periodically evaluate the management effectiveness of existing spatialbased fishing zones in Federal waters.

In order to monitor implementation of this objective, this annual report includes the Council's spatially-based fishing restrictions or MMAs, the goals associated with those, and the most recent evaluation. Council research needs are identified and prioritized through the Five Year Research Priorities and other processes, and are not tracked in this report.

In order to meet the EFH and National Environmental Policy Act (NEPA) mandates, this annual report tracks activities that occur in the ocean that are of interest to the Council, and incidents or facilities that may contribute to cumulative impact. NMFS is responsible for NEPA compliance, and the Council must assess the environmental effects of ocean activities for the FEP's EFH cumulative impacts section.


2.7.2 Response to Previous Council Recommendations

There are no Council recommendations indicating review deadlines for Marianas MMAs.

2.7.3 Marine Managed Areas Established under FEPs

Council-established MMAs were compiled in Table 78 from 50 CFR § 665, Western Pacific Fisheries, the Federal Register, and Council amendment documents. All regulated fishing areas

and large scale access restrictions, including the Mariana Trench Marine National Monument, are shown in Figure 42.

* The Coral Reef Ecosystem Regulatory Area excluded the portion of EEZ waters 0-3 miles around the CNMI. The Bottomfish Management Subarea was divided in the CNMI Inshore Area, which was that portion of the EEZ shoreward of 3 nautical miles of the shoreline of CNMI, and the CNMI Offshore Area, which was that portion of the EEZ seaward of 3 nautical miles from the CNMI shoreline.

Figure 42. Regulated fishing areas of the Mariana Archipelago

Name	FEP	Island	50 CFR /FR /Amendment Reference	Marine Area (km ²)	Fishing Restriction	Goals	Most Recent Evaluation	Review Deadline
Pelagic Restrict	Pelagic Restrictions							
Guam Longline Prohibited Area	Pelagic	Guam	665.806(a)(3) <u>57 FR 7661</u> <u>Pelagic FMP Am.</u> <u>5</u>	50,192.88	Longline fishing prohibited	Prevent gear conflicts between longline vessels and troll/handline vessels.	1992	-
CNMI Longline Prohibited Area	Pelagic	-	665.806(a)(4) <u>76 FR 37287</u>	88,112.68	Longline fishing prohibited	Reduce potential for nearshore localized fish depletion from longline fishing, and to limit catch competition and gear conflicts between the CNMI-based longline and trolling fleets.	2011	-
Bottomfish Res	trictions		1			1		
Guam Large Vessel Prohibited Area	Mariana Archipelago	Guam	665.403(a) <u>71 FR 64474</u> Bottomfish FMP Am. 9	29,384.06	Vessels ≥ 50 feet prohibited	To maintain viable participation and bottomfish catch rates by small vessels in the fishery.	2006	-
Other Restriction	ons				·		•	
Guam No Anchor Zone	Mariana Archipelago	Guam	665.399 <u>69 FR 8336</u> <u>Coral Reef</u> <u>Ecosystem FEP</u>	138,992.51	Anchoring by all fishing vessels ≥ 50 ft. prohibited on the offshore southern banks located in the U.S. EEZ off Guam	Minimize adverse human impacts on coral reef resources.	2004	-

 Table 78. MMAs established under FEPs from 50 CFR § 665

2.7.4 Fishing Activities and Facilities

There are no proposed or existing offshore aquaculture projects in Federal waters of neither Guam nor CNMI.

2.7.5 Non-Fishing Activities and Facilities

The following section includes activities or facilities associated with known uses and predicted future uses. The Plan Team will add to this section as new facilities are proposed and/or built. Due to the sheer volume of ocean activities and the annual frequency of this report, only major activities on multi-year planning cycles are tracked in this report. Activities which are no longer reasonably foreseeable or have been replaced with another planning activity are removed from the report, though may occur in previous reports.

2.7.5.1 Alternative Energy Facilities

There are no proposed or existing alternative energy facilities in Federal waters of neither Guam nor CNMI.

2.7.5.2 Military Training and Testing Activities and Impacts

The Department of Defense major planning activities in the region are summarized in Table 79. Activities that are no longer reasonably foreseeable or have been replaced with another planning activity were removed from the report, though may occur in previous reports.

2.7.6 Pacific Islands Regional Planning Body Report

In June 2018, President Trump signed the EO 13840 *Regarding the Ocean Policy to Advance Economic, Security, and Environmental Interests of the United States*, which revoked EO 13547. The new EO eliminated the mandate for the federal government to participate in ocean planning at a regional level and eliminated the regional planning bodies. As such, the Pacific Islands Regional Planning Body (RPB) no longer exists and ocean planning will now occur at a local level led by Hawaii and the territories.

However, EO 13840 established a policy focused on public access to marine data and information, and requires federal agencies to 1) coordinate activities regarding ocean-related matters and 2) facilitate the coordination and collaboration of ocean-related matters with governments and ocean stakeholders. To that end, the <u>American Samoa Coastal and Marine Spatial Planning Data Portal</u> was created by Marine Cadastre (<u>https://marinecadastre.gov/</u><u>viewers/</u>). The intent is for it to be expanded to include the Marianas, PRIA, and Hawaii and be titled the Pacific Islands Regional Marine Planner.

Spatial planning has occurred in CNMI in Saipan Lagoon. CNMI Division of Coastal Resources Management developed the Saipan Lagoon Use Management Plan, which was updated in 2017 and can be found at https://dcrm.gov.mp/current-projects/saipan-lagoon-use-management-planning/. There is also an associated mapping tool that can be found at http://dcrm.maps.arcgis.com/apps/webappviewer/index.html?id=7def562d70014be58112bc62b1bf9902.

Action	Description	Phase	Impacts
Guam and CNMI Military Relocation SEIS	Relocate Marines to Guam and build a cantonment/family housing unit on Finegayan/AAFB, a live-fire individual training range complex at the Ritidian Unit of the Guam National Wildlife Refuge.	ROD published August 29, 2015. Suit filed for segmentation and range of reasonable alternatives under NEPA, requesting that DON vacate the ROD. DOJ asked US District Court for the NMI to dismiss the plaintiff's complaint with prejudice to prevent refiling (http://www.saipantribune.com/index.php/doj- federal-court-lacks-jurisdiction/).	Surface danger zone established at Ritidian – access restricted during training. Access will be negotiated between the Navy and USFWS. Northern District Wastewater Treatment Plant is non-compliant with NPDES permit; until plant is upgraded, increased wastewater discharge associated with buildup will significantly impact nearshore water quality. DOD to fund plant upgrades – see Economic Adjustment Committee Implementation Plan.
Mariana Islands Training and Testing – Supplemental	The supplement to the 2015 Final EIS/OEIS is being prepared to support ongoing and future activities conducted at sea and on Farallon de Medinilla (FDM) beyond 2020. New information, including an updated acoustic effects model, updated marine mammal density data, and evolving and emergent BSIA, will be used to update the MITT.	The 2019 MITT Final Supplemental EIS/OEIS is expected in spring 2020. Public Comment and Open House Public Meetings to take place in March and April of 2019.	Likely access and habitat impacts similar to previous analysis.

Table 79.	Department of Def	fense maior i	nlanning	activities
1 4010 771	Department of De	ionse major	president S	activities

<u>CNMI Joint</u> <u>Military</u> <u>Training</u>	Establish unit and combined level training ranges on Tinian and Pagan.	Supplemental Draft EIS expected in late 2018 or early 2019. Suit filed for segmentation and range of reasonable alternatives under NEPA. DOJ asked US District Court for the NMI to dismiss the plaintiff's complaint with prejudice to prevent refiling.	Significant access and habitat impacts.
Divert Activities and Exercises, Air Force, Marianas	Improve airports in CNMI for expanding mission requirements in Western Pacific.	The USAF has published a NOI to prepare a SEIS for the proposed Tinian Divert Infrastructure Improvements. The NOI began the public scoping process for the SEIS, which ended on May 31, 2018. Substantive comments received during the public scoping period will be taken into consideration during preparation of the Draft SEIS.	Adverse impacts to EFH minimal; access near Port of Tinian fuel transfer facility affected.
Garapan Anchorage	Military Pre- Positioned Ships anchor and transit.	Expired Memorandum of Understanding with the CNMI government. As of October 2018, MOU had not been signed.	Access, invasive species, unmitigated damage to reefs.
Farallon de Medinilla	Restricted airspace covering the island to 12 nmi radius to conduct military training scenarios using air-to- ground ordnance delivery, naval gunfire, lasers and special operations training.	 Final rule published March 13, 2017, effective June 22, 2017, designating a new area, R- 2701A, that surrounds existing R-2701, encompassing airspace between a 3 nmi radius and 12 nmi radius of FDM (82 FR 13389). Proposed surface danger zone to 12 nmi. Damage to submerged lands and fisheries to be included within consultation establishing continued US interest in the island and compensation to the CNMI (Report to the President on 902 Consultations, 2017) 	Access – to fishing grounds and transit to fishing grounds - and damage to submerged lands.

2.7.7 References

- 50 CFR 665. Fisheries in the Western Pacific. Title 50 *Code of Federal Regulations*, Pt. 665. Electronic Code of Federal Regulations data current as of March 16, 2016. Accessed at <u>http://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=b28abb7da3229173411daf43959fcbd1&n=50y13.0.1.1.2&r</u> <u>=PART&ty=HTML# top</u>.
- 57 FR 7661. Pelagic Fisheries of the Western Pacific Region, Final Rule. Federal Register 57 (4 March 1992): 7661-7665. Downloaded from <u>http://www.wpcouncil.org/pelagic/Documents/FMP/Amendment5-FR-FinalRule.pdf</u>.
- 69 FR 8336. Fisheries Off West Coast States and in the Western Pacific; Coral Reef Ecosystems Fishery Management Plan for the Western Pacific, Final Rule. *Federal Register* 69 (24 February 2004): 8336-8349. Downloaded from <u>http://www.wpcouncil.org/precious/Documents/FMP/Amendment5-FR-FinalRule.pdf</u>.
- 71 FR 64474. Fisheries in the Western Pacific; Western Pacific Bottomfish and Seamount Groundfish Fisheries; Guam Bottomfish Management Measures, Final Rule. *Federal Register* 71 (2 November 2006): 64474-64477. Downloaded from <u>http://www.wpcouncil.org/bottomfish/Documents/FMP/Bottomfish%20A9%20Final%20</u> <u>Rule%202006.pdf</u>.
- 76 FR 37287. Western Pacific Pelagic Fisheries; Prohibiting Longline Fishing Within 30 nm of the Northern Mariana Islands, Final Rule. *Federal Register* 76 (27 June 2011): 37287-37289. Downloaded from <u>https://www.govinfo.gov/content/pkg/FR-2011-06-</u> <u>27/pdf/2011-16039.pdf</u>.
- 78 FR 32996. Western Pacific Fisheries; Fishing in the Marianas Trench, Pacific Remote Islands, and Rose Atoll Marine National Monuments, Final Rule. *Federal Register* 78 (3 June 2013): 32996-33007. Downloaded from http://www.wpcouncil.org/precious/Documents/FMP/Amendment5-FR-FinalRule.pdf.
- 80 FR 46252. Department of Defense; Department of the Navy. Record of Decision for the Mariana Islands Training and Testing Final Environmental Impact Statement/Overseas Environmental Impact Statement, Notice. *Federal Register* 80 (4 August 2015): 46252. Downloaded from <u>https://www.govinfo.gov/content/pkg/FR-2015-08-04/pdf/2015-19050.pdf</u>.
- 80 FR 55838. Department of Defense; Department of the Navy. Record of Decision for the Final Supplemental Environmental Impact Statement for Guam and Commonwealth of the Northern Mariana Islands Military Relocation, Notice. *Federal Register* 80 (17 September 2015): 55838-55839. Downloaded from <u>https://www.govinfo.gov/content/pkg/FR-2015-09-17/pdf/2015-23244.pdf</u>.
- 81 FR 92791. Department of Defense; United States Air Force. Record of Decision for Divert Activities and Exercises, Commonwelath of the Northern Mariana Islands, Notice.

Federal Register 81 (20 December 2016): 92791. Downloaded from <u>https://www.govinfo.gov/content/pkg/FR-2016-12-20/pdf/2016-30488.pdf</u>.

- 82 FR 13389. Modification of Restricted Area R–7201; Farallon De Medinilla Island, Mariana Islands, Final Rule. *Federal Register* 82 (13 March 2017): 13389-13390. Downloaded from <u>https://www.govinfo.gov/content/pkg/FR-2017-03-13/pdf/FR-2017-03-13.pdf</u>.
- CNMI Joint Military Training EIS/OEIS. "DOD to Issue Revise Draft EIS on CJMT". Department of Defense. Published 18 February, 2016. Accessed February 28, 2017. <u>http://www.cnmijointmilitarytrainingeis.com/announcements/25</u>.
- De La Torre, F. 2016. "DOJ: Federal court lacks jurisdiction." Saipan Tribune. Published 25 November 2016. <u>http://www.saipantribune.com/index.php/doj-federal-court-lacks-jurisdiction/</u>.
- Hofschneider, A. 2017. "The U.S. Military Won't Bomb Pagan Just Yet." Honolulu Civil Beat. Published 9 March 2017. <u>http://www.civilbeat.org/2017/03/the-u-s-military-wont-bomb-pagan-or-tinian-just-yet/?mc_cid=1a464a317d&mc_eid=abaf3b9d93</u>.
- U.S. Department of Defense. 2015. Draft Environmental Impact Statement: Joint Military Training, Commonwealth of the Northern Mariana Islands. Accessed 10 March 2017. <u>https://cnmimarines.s3.amazonaws.com/static/DraftEIS/Cover%20thru%20Readers%20</u> <u>Guide.pdf</u>.
- U.S. Department of Defense, Department of the Air Force. 2016. Final environmental Impact Statement: Divert Activities and Exercises, Commonwealth of the Northern Mariana Islands. Accessed 17 March 2016. <u>http://www.pacafdivertmarianaseis.com/archive</u>.
- U.S. Department of the Interior. Report to the President on 902 Consultations. 2017. Special Representatives of the United States and the Commonwealth of the Northern Mariana Islands. January 2017. Accessed 12 March 2018. <u>https://www.doi.gov/sites/doi.gov/files/uploads/902-consultations-report-january-2017.pdf</u>.
- WPRFMC. 2015. Report of the CNMI Advisory Panel to the Western Pacific Regional Fishery Management Council, June 2015.
- WPRFMC. 2018. Fishery Management Plan and Fishery Ecosystem Plan Amendments. Available from <u>http://www.wpcouncil.org/fishery-plans-policies-reports/current-fishery-ecosystem-plans-sorted-by-island-areas/</u>.

3 DATA INTEGRATION

3.1 INTRODUCTION

3.1.1 Potential Indicators for Nearshore Fisheries

The purpose of this section ("Chapter 3") of the Stock Assessment and Fishery Evaluation (SAFE) annual report is to identify and evaluate potential fishery ecosystem relationships between fishery parameters and ecosystem variables to assess how changes in the ecosystem affect fisheries in the Mariana Archipelago and across the Western Pacific region. "Fishery ecosystem relationships" are those associations between various fishery-dependent data measures (e.g., catch, effort, or catch-per-unit-effort), and other environmental attributes (e.g., precipitation, sea surface temperature, primary productivity) that may contribute to observed trends or act as potential indicators of the status of prominent stocks in the fishery. These analyses represent a first step in a sequence of exploratory analyses that will be utilized to inform new assessments of what factors may be useful going forward.

To support the development of Chapter 3 of the annual SAFE report, staff from the Council, NMFS PIFSC and PIRO, and Triton Aquatics (consultants), held a SAFE Report Data Integration Workshop (hereafter, "the Workshop") convened on November 30, 2016 to identify potential fishery ecosystem relationships relevant to local policy in the WPR and determine appropriate methods to analyze them. The archipelagic fisheries group developed nearly 30 potential fishery ecosystem relationships to examine across bottomfish, coral reef, and crustacean fisheries based on data reliability, suitability of methodology, repeatability on an annual basis, and how well analyses could potentially inform management decisions.

Brief introductory analyses, presented in this section and initially introduced in the 2017 report, were intended to be "proof of concept" such that similar evaluations could be carried out on remaining fishery data for the Mariana Archipelago in the future. However, the Archipelagic Fishery Ecosystem Plan Team determined that the quantitative analyses presented here were not sufficient to act as a model for future evaluations. Using the direction from the Plan Team, the data integration module was updated for the Hawaii Archipelagic Annual SAFE Report for the 2018 report, but each of the remaining archipelagic reports still contains data integration assessments from 2017. The Annual SAFE Report for the Mariana Archipelago will be updated in the following year similar to the Annual SAFE Report for the Hawaii Archipelago pending Plan Team support.

Going forward, relationships deemed potentially relevant will be emphasized and recommended for further analysis. In subsequent years, this chapter will be updated with these analyses through the SAFE report process as the strength of certain fishery ecosystem relationships relevant to advancing ecosystem-based fishery management are determined.

To begin, this chapter described feedback from the Plan Team, SSC, and Council members on the initial drafts of the data integration module. Next, the chapter includes brief descriptions of past work on fishery ecosystem relationship assessment in coral reefs of the U.S. Western Pacific, followed by initial evaluations of relationships previously recommended for evaluation by participants of the Workshop using current data streams from the Mariana Archipelago. The evaluations completed were exploratory in nature, being the first step of analyses to know which comparisons may be more useful to focus on going forward.

Going forward with the analyses and presentation of results for the data integration chapter of the Marianas Archipelago Annual SAFE Report, the Plan Team suggested several improvements to implement in the coming year: standardizing and correcting values in CPUE time series, incorporating longer stretches of phase lag, completing comparisons on the species-level and by dominant gear types, incorporating local knowledge on shifts in fishing dynamics over the course of the time series, and utilizing the exact environmental data sets presented in the ecosystem consideration chapter of the annual report. Many of these recommendations were applied to datasets from Hawaii in 2018, and will similarly be done for Marianas data integration analyses in the upcoming report cycles. Implementation of these suggestions will allow for the preparation of a more finalized version of the data integration chapter in the coming report cycles.

3.1.2 2018 Recommendations for Chapter Development

At the most recent FEP Plan Team Meeting held on April 30th – May 1st, 2018, participants were presented preliminary data integration results shown here, and provided detailed recommendations to support the ongoing development of the data integration section of the Archipelagic Annual SAFE Report. These suggestions, both general and specific, will be implemented in the coming year to ensure that more refined analyses comprise the data integration section. FEP Plan Team participants recommended that:

- CPUE data should be standardized and calculated in a more robust fashion, measuring the average catch per unit effort rate over the course of a year to analyze variance.
- Analyses of fishery performance data against environmental variables should focus on dominant gear types rather than the entirety of the fishery or other gear aggregates (e.g. purse seine harvest of *Selar crumenophthalmus* in the MHI).
- There should be additional phase lag implemented in the analyses
- Local knowledge of fishery dynamics, especially pertaining to shifting gear preferences, should be utilized. Changes in dynamics that may have impacted observed fishery trends over the course of available time series, both discreetly and long-term for taxa-specific and general changes should be emphasized.
- Spatial specificity and precision should be increased for analyses of environmental variables in relation to areas commonly fished.

The analyses presented in the data integration chapter of the 2018 Hawaii Annual SAFE Report are a reflection of a thoughtful re-approaching to these data integration evaluations based on this feedback. Additional data can be added to either time series as they are made available. Incorporating such recommendations into the 2018 version of the Mariana Archipelago Annual SAFE Report will mark the beginning of a standardized process to implement current data integration analyses on an annual basis. Doing so will promote more proactive management action with respect to ecosystem-based fishery management objectives.

3.1.3 Past Work

Richards et al. (2012) performed a study on a range environmental factors that could potentially affect the distribution of large-bodied coral reef fish in Mariana Archipelago. Large-bodied reef fish were determined to typically be at the greatest risk of overfishing, and their distribution in the region was shown to be negatively associated with human population density. Additionally, depth, sea surface temperature (SST), and distance to deep water were identified as important environmental factors to large-bodied coral reef fish, whereas topographic complexity, benthic habitat structure, and benthic cover had little association with reef fish distribution in the Mariana Archipelago.

Kitiona et al. (2016) completed a study of the impacts climate and/or ecosystem change on coral reefs fish stocks of American Samoa using climate and oceanic indicators (see Section 2.5.4). The evaluation of environmental variables showed that certain climate parameters (e.g., SST anomaly, sea level height, precipitation, and tropical storm days) are likely linked to fishery performance. It was also noted that larger natural disturbances in recent decades, such as cyclones and tsunamis, negatively impacted reef fish assemblages and lowed reef fishery CPUE in American Samoa (Ochavillo et al., 2012).

On a larger spatial scale, an analysis of various drivers on coral reef fish populations across 37 U.S.-affiliated islands in the Central and Western Pacific was performed by Williams et al. (2015), and evaluated relationships between fish biomass in these reefs with human and environmental factors. Again, reef fish assemblages were negatively associated with increasing human population density (even at relatively low levels) across the WRP, but were positively associated with elevated levels of ocean productivity across islands. The authors warned, however, that the ability of reefs surrounding uninhabited islands to maintain fish populations varies, and that high biomass observed in remote areas (e.g. the NWHI) may not necessarily be reflective of baselines or recovery response levels for all reef systems.

A common method of EBFM used in coral reef ecosystems is the implementation of biological reference points, statistical indicators of potential overfishing used to help determine how a fishery is performing relative to these points at a given time (McClanahan et al., 2007). Hawhee (2007) adapted this idea, generating biological reference points in the form of CPUE-based proxies to be used as indicators for reef fish stocks in the WPR. However, the devised method was determined to be inappropriate for application in management of reef stocks in the U.S. Western Pacific due to the lack of a historical CPUE to use as a baseline for the reference points and their limit thresholds (Remington and Field, 2016).

3.2 PRECIPITATION

3.2.1 Guam

Participants of the Workshop determined that the potential fishery ecosystem relationships between precipitation levels and atulai and opelu (bigeye scad and mackerel scad, *Selar crumenophthalmus* and *Decapterus macarellus*, respectively) were among the highest priority of those involving coral reef fisheries in the Mariana Archipelago. It has been suggested that the recruitment of small tropical pelagic fish is related to annual rainfall and subsequent runoff enrichment (Longhurst and Pauly, 1987). The direct freshwater and nutrient input to reefs associated with increased precipitation can alter the physiochemical composition of the water, and it has been shown that reef assemblages are positively associated with this sort of increased ocean productivity (Williams et al. 2015). Data for precipitation in the Mariana Archipelago was gathered from local databases maintained by the National Weather Service (NWS-G). The time series of total annual precipitation from showed a non-significant, slightly variable trend over the last 30 years ($R^2 = 0.05$, CV = 19.5; Figure 43).

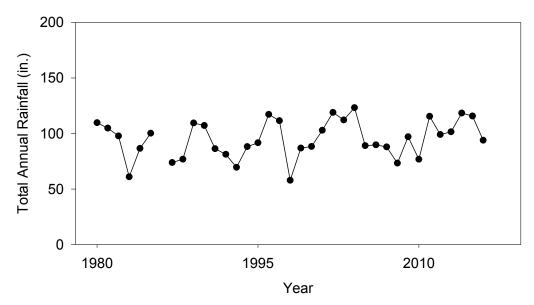


Figure 43. Total annual precipitation (in.) in Guam from 1980-2016

3.2.1.1 Evaluating relationship with atulai

Total annual estimated atulai catch in the Guam recreational coral reef fishery according to shore- and boat-based creel surveys showed no general trend over the last thirty years, with relatively large variability likely due to several years of catch orders of magnitude greater than previous or subsequent years (e.g., 2009; $R^2 = 0.01$; CV = 119.5; Figure 44). Combined effort statistics between shore- and boat-based creel survey statistics could not be generated because the proxies used to measure effort in each survey are different (i.e. number of gear hours versus number of boat trips). Similarly, because effort could not be standardized across the data sets, CPUE could not be generated on the individual family level at which these evaluations are taking place.

Examining effort, Guam shore-based creel survey data show that there are considerable differences in the number of samples recorded across gear types. The most frequently sampled gear in the shore-based survey was hook and line by an order of magnitude, and had catch estimated to be several times greater than that in the expanded dataset (Figure 45a-b). Effort data also revealed that, despite catch statistics, the gill net had been sampled the least frequently among the top gears (Figure 45a-b). Boat-based effort data show that bottom fishing was sampled approximately twice as much than the other three top gears, but the difference in the expanded estimates between were at least an order of magnitude greater (Figure 45c-d).

Generally, each of the time series for prominent gear types in Guam showed a slight shift but seemingly no net change over the course of available data despite interannual variability.

Total estimated atulai catch and rainfall in Guam showed no statistical association with one another such that would allow for assessment of the fishery ecosystem relationship between the two (R^2 =0.02; Figure 46). However, there seemed to be a slight observable negative relationship between the two (r = -0.15), indicating that catch may have experienced a minor decrease in years with more rainfall. Additionally, there was no association between annual rainfall amounts and total estimated atulai catch in Guam when only considering shore-based data, boat-based data, or prominent gear types.

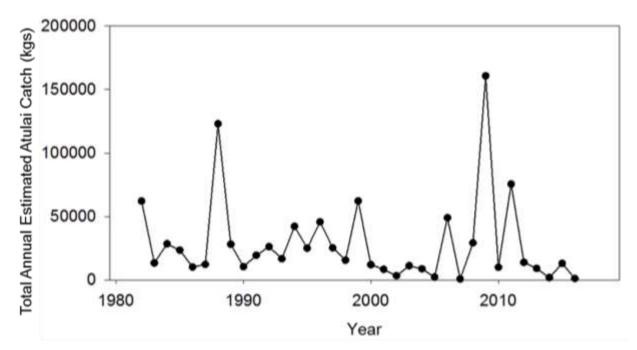


Figure 44. Time series of total annual estimated (i.e. expanded) landings of atulai in kilograms from Guam shore-and boat-based creel survey records from 1982-2016

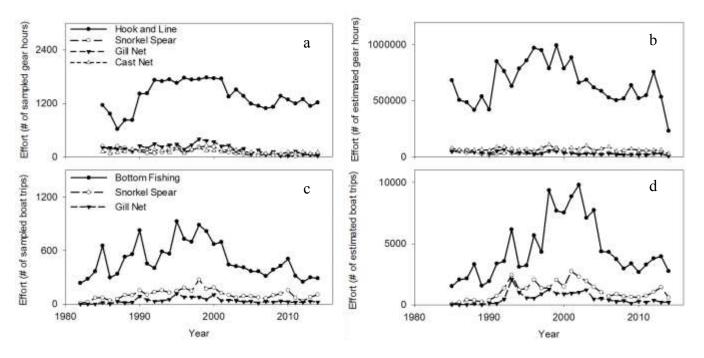


Figure 45. Time series of total sampled (left) and expanded (right) effort for top gear types in shore-based (top) and boat-based (bottom) creel surveys in Guam from 1982-2016

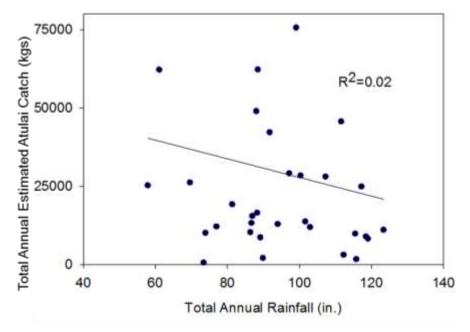
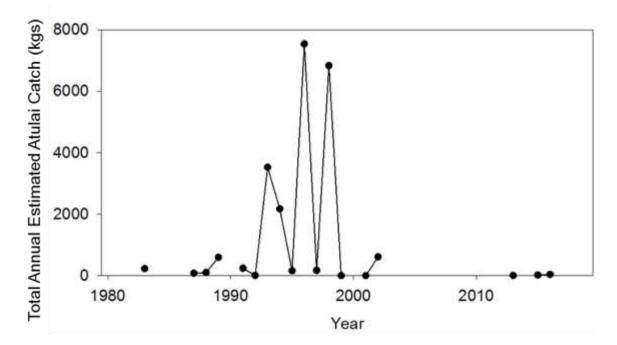



Figure 46. Linear regression between total atulai catch (kg) in the Guam shore-based and boat-based creel survey records and total annual rainfall (in.) from 1982-2016

3.2.1.2 Evaluating relationship with *D. macarellus*

Decapterus macarellus (i.e. mackerel scad) records from creel surveys in Guam were scant and had high variability, with estimated catch for many years being close to zero while others had close to 8,000 kg ($R^2 = 0.01$; CV = 278.4; Figure 47). Several years where mackerel scad catch

data were available, they indicated a total amount landed of just a few kilograms (e.g. 1999, 2001, 2013, etc.; Figure 47). Because there were 17 of 35 total years with available mackerel scad catch data across gear types for the entire territory since 1982, many with extremely low catch estimates, the time series were not able to be used for comparison to rainfall records in the same region over the last thirty years.

Figure 47. Time series of total annual expanded landings of *Decapterus macarellus* (kg) in Guam shore-and boat-based creel survey records from 1982-2016

In summary, no fishery ecosystem relationship could be established between atulai or mackerel scad catch with precipitation in Guam from 1982 till present without the incorporation of phase lag, and no standardized index/threshold characteristic of the association between the parameters could be identified representative of an immediate population response. The general lack of recreational harvest data for mackerel scad in Guam hindered the ability to determine whether a relationship exists with rainfall in that portion of the fishery. Analyses including atulai data had similar comparisons with rainfall data completed in the MHI as well, though no notable relationship between atulai catch and annual precipitation was identified there.

3.3 SEA SURFACE TEMPERATURE

Sea surface temperature (SST) is a commonly used diagnostic tool in monitoring climate change and its affects both regionally and globally, as it is representative of changes in ocean temperatures over time that can affect coastal fisheries (see Section 2.5.4). The potential influence of temperature-derived variables in fishery ecosystem relationships for U.S. Western Pacific coral reef stocks was deemed to be among the highest priority by the participants of the Workshop. Data for SST was gathered from the NOAA's AVHRR Pathfinder v5.0 through the OceanWatch program in the Central Pacific (NOAA/NESDIS/OceanWatch). A time series of SST for the CNMI from 1985-2016 is shown in Figure 48. SST here had slightly less variability over time than Guam (CV = 0.55), again indicating relative stability. Unlike Guam, the CNMI did not seem to be observably increasing or decreasing over the time series of available data. The hottest temperature in the last three decades was approximately 29°C, where preceding SST had largely been stable over time. The average SST over the course of evaluated data was 28.8°C, slightly warmer than observed in Guam. The lowest recorded SST over the course of the time series was just about 27.5°C in the year 1996 (Figure 48).

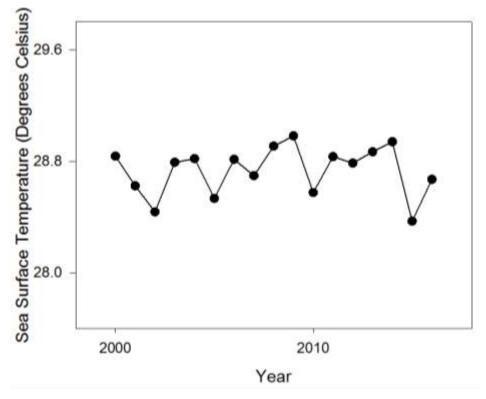


Figure 48. Time series of SST (°C) in the CNMI from 1985-2016 (CV = 0.55)

A time series of SST for Guam from 1985-2016 is shown in Figure 49. Temperature had low variability over time (CV = 1.38), suggesting relative stability. There was also a seeming increase in temperature over the last three decades, with some of the hottest temperatures recorded observed in the last five years. The average SST over the course of evaluated data was 28.6°C. The highest recorded SST over the course of the time series was just over 29°C in the year 1999, whereas the lowest was earlier in the 1990s (27.7°C; Figure 49).

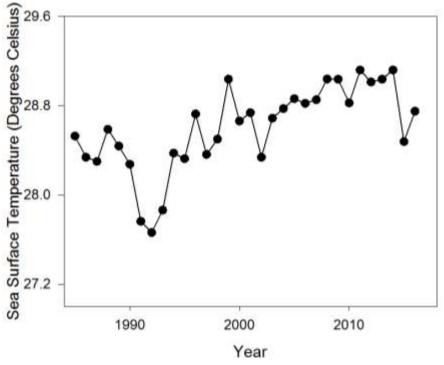


Figure 49. Time series of SST (°C) from 1985-2016 in Guam (CV = 1.38)

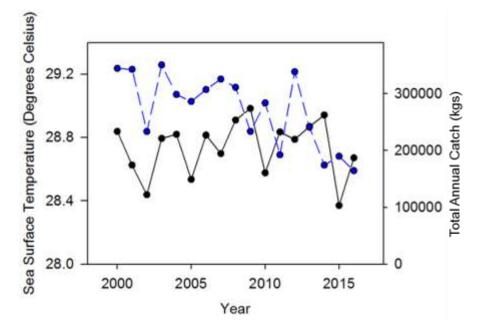
3.3.1 CNMI

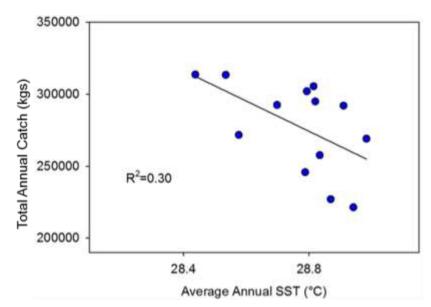
3.3.1.1 Evaluating relationship for entire reef fishery

A plot showing the relationship between SST and catch time series from the recreational coral reef fishery in the CNMI from 2000-2016 is depicted in Figure 50. Landings were variable over the course of the time series (CV = 19.4), but less so than observed in catch time series in Guam. Total annual catch in the fishery has been observably decreasing over the last decade and a half despite an abrupt increase in 2013 resulting in the recorded maximum catch over this period (~338,000 kg). Recent recorded catch levels (i.e. for 2016) were the lowest for the fishery through the available time series of data (~165,000 kg; Figure 50).

In performing comparisons between fishery parameters and environmental variables such as SST, data were grouped in taxa categories based on family due to scarcity of data on the species level in many cases. Table 80 displays the different dominant family groups considered as well as their common names.

Linear regressions and correlation analyses performed on the time series of recreational coral reef fishery catch (kg) and annual mean SST from the CNMI are reported in Table 81. The comparisons between the two parameters showed a negatively significant relationship between 2000 and 2016 ($R^2 = 0.30$, p = 0.02; Table 81; Figure 51). The relationship between the total annual catch and average annual SST for the whole fishery were associated such that for every degree Celsius of temperature increase, catch would decrease by approximately 105,000 kg (Figure 51).




Figure 50. Time series of total annual catch (kg; blue) for the CNMI recreational coral reef fishery plotted alongside average annual SST (°C; black) from 2000-2016

Four-letter code	Family	Common Name
LUTJ	Lutjanidae	snappers
LETH	Lethrinidae	emperors
CARA	Carangidae	jacks/mackerel/trevally
ACAN	Acanthuridae	unicornfish/tang
SERR	Serranidae	Sea bass/grouper
SIGA	Siganidae	rabbitfish
SCAR	Scaridae	parrotfish
MULL	Mullidae	goatfish
MUGI	Mugilidae	mullet
LABR	Labridae	wrasse
HOLO	Holocentridae	squirrelfish/soldierfish
BALI	Balistidae	triggerfish

Table 80. Families in creel surveys from the U.S. Western Pacific analyzed in this report

Table 81. Correlation coefficients (r) between recreational coral reef fishery catch (kg) andSST (°C) in the CNMI for 12 top taxa harvested from 2000-2016

Taxa Code	Total Catch	LUTJ	LETH	CARA	ACAN	SERR	SIGA	SCAR	MULL	MUGI	LABR	HOLO	BALI
n = 1 7													
р	0.02	0.49	0.54	0.26	0.70	0.91	0.99	0.88	0.06	-	0.59	0.91	0.82
r	-0.55	0.18	-0.16	-0.29	-0.10	-0.03	0.00	-0.04	-0.47	-	0.14	0.03	-0.06
R ²	0.30	0.03	0.02	0.09	0.01	0.00	0.00	0.00	0.22	-	0.02	0.00	0.00

Figure 51. Linear regression showing the correlation between total annual catch (kg) in creel survey records and average annual SST (°C) in the CNMI from 2000-2016

3.3.1.2 Evaluating relationship for dominant taxa

Correlation and regression analyses were performed on prominent taxa in the CNMI recreational coral reef fishery, and it was found that no individual taxa had significant relationships with SST data (Table 81). The strongest associations between fishery catch and SST were observed from the Mullids ($R^2 = 0.22$, p = 0.06; Figure 52a), Carangids ($R^2 = 0.09$, p = 0.26; Figure 52b), and Lutjanids ($R^2 = 0.03$, p = 0.49; Figure 52c). While the relationship between catch and temperature for families Mullidae and Carangidae were negative, the Lutjanidae family had a positive relationship (Table 81).

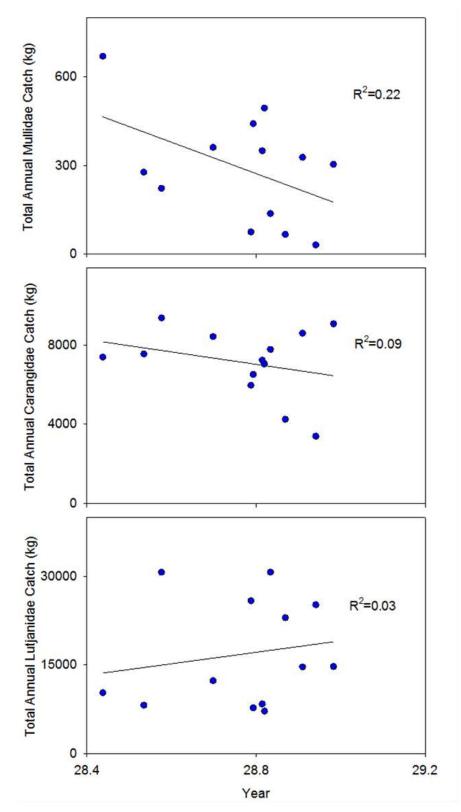


Figure 52. Linear regressions showing the three top correlations between total annual catch (kg) from creel survey records and average annual SST (°C) in the CNMI from for (a) Mullids, (b) Carangids, and (c) Lutjanids from 2000–2016

3.3.2 Guam

3.3.2.1 Evaluating relationship for entire reef fishery

An individual plot depicting the comparisons of time series of SST and catch from the recreational coral reef fishery in Guam from 1985-2016 is shown in Figure 53. Landings were variable over the course of the time series (CV = 28.1) though relatively stable, especially before the year 2000. There was a relatively abrupt observed decrease in total annual catch from 1998 to 2005, where recorded landings went from over half a million kg to approximately 180,000 kg in less than a decade. Catch has slightly rebounded since that minimum, with landings reaching over 400,000 kg in six of the last seven years (Figure 53).

Multiple linear regressions and correlation analyses were performed on time series of recreational coral reef fishery catch and annual mean SST from Guam (Table 82). Evaluations measuring the association between SST and total catch for the entirety of the recreational coral reef fishery in Guam showed a negatively significant relationship between 1985 and 2016 ($R^2 = 0.20$, p = 0.02; Table 82; Figure 54). The relationship between the total annual catch and average annual SST were associated such that for every degree Celsius of temperature increase, catch would decrease by approximately 120,000 kg (Figure 54).

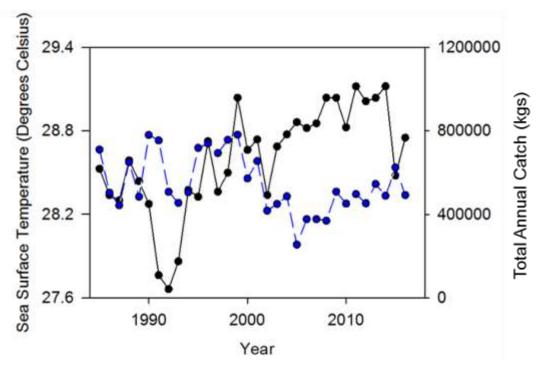
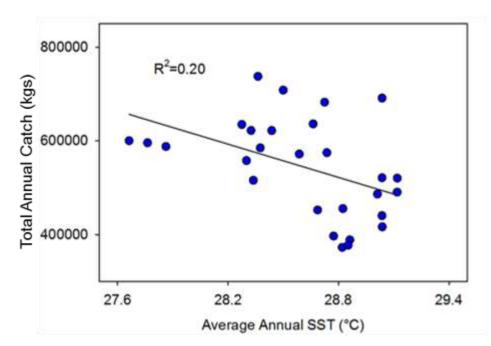
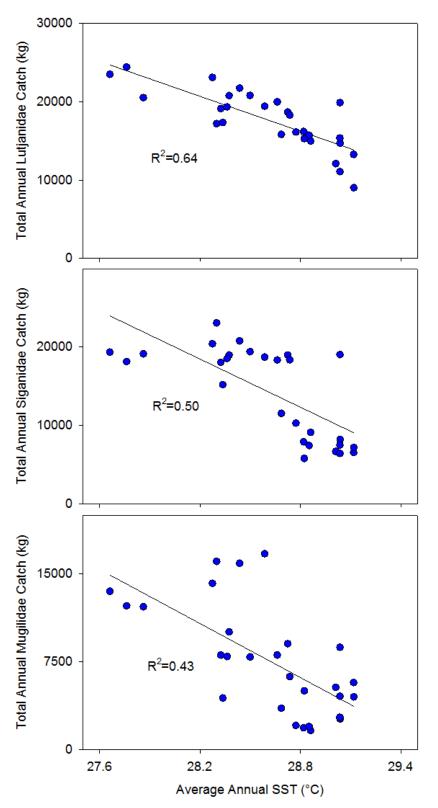



Figure 53. Time series of total annual catch (kg; blue) in the Guam shore-and boat-based creel survey records plotted with average annual SST (°C; black) from 1985-2016

Table 82. Correlation coefficients (r) between recreational coral reef fishery catch (in kg)and SST (°C) in Guam for 12 top taxa harvested from 1985-2016


Taxa Code	Total Catch	LUTJ	LETH	CARA	ACAN	SERR	SIGA	SCAR	MULL	MUGI	LABR	HOLO	BALI
n = 28													
р	0.02	0.01	0.00	0.01	0.39	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00
r	-0.45	-0.80	-0.48	0.17	-0.50	-0.54	-0.71	-0.51	-0.56	-0.66	-0.60	-0.63	-0.43
R^2	0.20	0.64	0.23	0.03	0.25	0.30	0.50	0.26	0.31	0.43	0.35	0.39	0.18

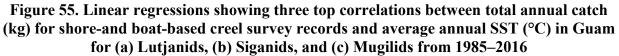


Figure 54. Linear regression between total annual catch (kg) for shore- and boat-based creel survey records and average annual SST (°C) in Guam from 1985-2016

3.3.2.2 Evaluating relationship for dominant taxa

Comparisons were made for the time series of catch for prevalent taxa in Guam's recreational reef fishery as well, and it was found that all except for the Acanthuridae family showed negative statistically significant correlations with SST (Table 82). The strongest relationship observed was of that between SST and annual Lutjanidae catch, where the regression suggested that for every degree Celsius of temperature increase, catch would decrease by approximately 7,500 kg ($R^2 = 0.64$, p = 0.00; Table 82; Figure 55a). The next two strongest associations observed were for families Siganidae ($R^2 = 0.50$, p = 0.00; Figure 55b) and Mugilidae ($R^2 = 0.43$, p = 0.01; Figure 55c). The regressions performed with temperature for taxa, suggesting negative relationships with temperature, also showed that for every degree of temperature increase in degrees Celsius, Siganidae and Mugilidae recreational catch in Guam would decrease by approximately 10,000 kg and 7,500 kg, respectively.

In summary, Guam and the CNMI had fishery ecosystem relationships that could be identified for the entirety of the recreational coral reef fishery. The relationship between the total annual catch and average annual SST in Guam were associated such that for every degree Celsius of temperature increase, catch would decrease by approximately 120,000 kg The relationship between the total annual catch and average annual SST in the CNMI were associated such that for every degree Celsius of temperature increase, catch would decrease by approximately 120,000 kg The relationship between the total annual catch and average annual SST in the CNMI were associated such that for every degree Celsius of temperature increase, catch would decrease by approximately 105,000 kg

In Guam, the linear regressions performed showed that all evaluated taxa except for the Acanthurids had a statistically significant negative relationship with average annual temperature. The three strongest associations with SST were with the Lutjanids, Siganids, and Mugilids, such that the total annual catch for each would decrease by approximately 7,500-10,000 kg for every increase in SST by one degree Celsius. In the CNMI, conversely, there were no individual family groups whose catch data had statistically significant associations with temperature, though the strongest associations observed were the Mullids (relatively close to the threshold of significance, p = 0.06), Carangids, and Lutjanids. The relationships for families Mullidae and Carangidae were negative, though the Lutjanidae family displayed a positive relationship with SST.

3.4 PRIMARY PRODUCTIVITY

3.4.1 CNMI

Concentrations of the pigment chlorophyll-*a* are commonly used as an index of phytoplankton biomass that represents primary production, a commonly utilized tool in identifying eutrophication also noted to be among the highest priority fishery ecosystem relationships in the WPR by participants of the Workshop (Islam and Tanaka, 2004). In Pacific regions where interannual precipitation and associated coastal runoff are relatively high, the physiochemistry of nearshore reefs is especially impacted from accompanying nutrient input resulting in increased primary production (Ansell et al., 1996).

Long-term changes in regional primary productivity have the potential to change reef fish population abundance due to the susceptibility of these assemblages in shallow areas of coastal reefs to variations in water chemistry, especially when combined with the variability of other environmental parameters like sea surface temperature (Kitiona et al. 2016). For example, it has been suggested that warming ocean temperatures coupled with decreasing environmental productivity led to waning reef fish assemblages in the Southern California Bight, likely due to a reduction in upwelling that isolated nutrients at depth (Roemmich and McGowan, 1995). With recent progress in satellite and fluorometric measurements of oceanic surface waters, time series of global and regional primary production estimated using concentrations of chlorophyll-*a* have become increasingly available, and can be used for evaluating the impact of environmental productivity on reef fish population abundance and the marine food web in general (Behrenfed et al., 2006; Messié and Radenac, 2006). Data for the study at hand were gathered from the ESA Ocean Colour Climate Change Initiative dataset version 3.1.

Considering the Ocean Colour Climate Change Initiative dataset (v3.1) for CNMI, the time series of fluorometric chlorophyll-*a* concentrations (mg/m^3) for the years 1998-2016 in the

region is shown in Figure 56. The chlorophyll concentrations had less variability than Guam (CV = 6.28), but was relatively higher in overall average concentration. Unlike Guam, however, pigment levels appeared to have been decreasing over the course of the time series despite the non-significant nature of the associated regression. Over the 15 years of evaluated data, the average chlorophyll-*a* concentration was 0.049 mg/m³, though the lowest recorded level was seen in 2014 at 0.042 mg/m³ Figure 56.

A time series of fluorometric chlorophyll-*a* concentrations (mg/m^3) for the years 1998-2016 in Guam is shown in Figure 57. Pigment concentration in the upper 200 meters had moderate variability over the course of the time series (CV=7.03). Also, there seemed to be a slight increase in pigment concentrations over the course of collected data despite the lack of a significant trend over the same time. The average chlorophyll-*a* concentration over this time was 0.048 mg/m³, with the highest recorded levels being observed in 2005 at 0.055 mg/m³ and the lowest occurring earlier in 2002 (0.042 mg/m³; Figure 57).

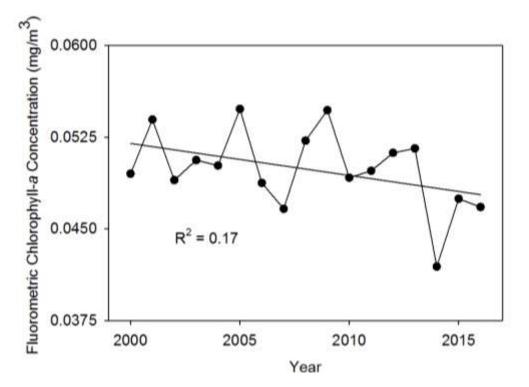


Figure 56. Time series of fluorometric chlorophyll-a concentrations (mg/m³) around the CNMI from 1998-2016 (CV=6.28)

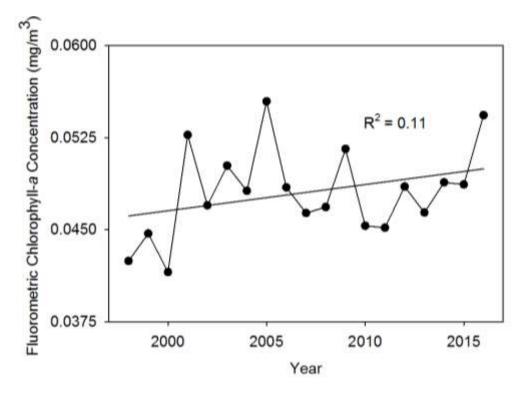


Figure 57. Time series of fluorometric chlorophyll-a concentrations (mg/m³) around Guam from 1998-2016 (CV=7.03)

3.4.1.1 Evaluating relationship for entire reef fishery

A plot showing the relationship between these same chlorophyll levels and catch time series from the recreational coral reef fishery in the CNMI from 2000-2016 is depicted in Figure 58. Catch, again, was even more variable than the environmental data evaluated (CV=19.4), and was at about the same levels as Guam. Total annual catch in the fishery has been decreasing over the last decade and a half despite a spike in catch during 2013 that gave the maximum observed annual catch over this time series (~338,000 kg). The levels of current catch (i.e., for 2014-2016) are the lowest for the entirety of the recreational fishery over the past decade and a half (~165,000 kg; Figure 58).

In pattern with the analyses completed for Guam, linear regressions and correlation analyses were conducted for the time series of the CNMI recreational coral reef fishery catch (with phase lag) with fluorometric chlorophyll-*a* concentrations (mg/m³) gathered for the 15 years between 2000-2014. The chlorophyll-*a* concentrations and total annual catch for the all harvested taxa had a positive relationship between 2000 and 2014, though the relationship was far from being considered statistically significant (r = 0.32, p = 0.25; Table 83; Figure 59). Though not significant, the regression was extrapolated to determine that, following this pattern, every increase of 0.01 mg/m³ in chlorophyll-*a* concentration would cause increase by nearly 62,000 kg two years later for all the CNMI recreational reef fishery (R²=0.11, p = 0.25; Figure 59).

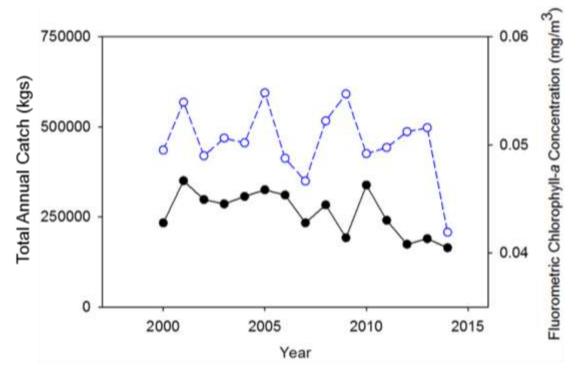


Figure 58. Comparison of the CNMI recreational reef fish catch (kg; black) from creel survey records with two years of time lag (t+2 years) and fluorometric chlorophyll-*a* concentrations (mg/m³; blue) from 2000-2014 (r = 0.32)

Table 83. Correlation coefficients (r) from comparisons of time series of the CNMIrecreational coral reef fishery annual catch (kg) and fluorometric chlorophyll-aconcentrations (mg/m³) from 2000-2014

Taxa Code	Total Catch	LUTJ	LETH	CARA	ACAN	SERR	SIGA	SCAR	MULL	MUGI	LABR	HOLO	BALI
n = 15													
р	0.25	0.47	0.14	0.67	0.37	0.09	0.72	0.80	0.99	0.83	0.83	0.10	0.72
r	0.32	-0.20	-0.04	0.12	0.25	0.45	-0.10	-0.07	0.00	-0.06	-0.06	0.44	0.10
R ²	0.11	0.04	0.00	0.02	0.06	0.20	0.01	0.01	0.00	0.00	0.00	0.20	0.01

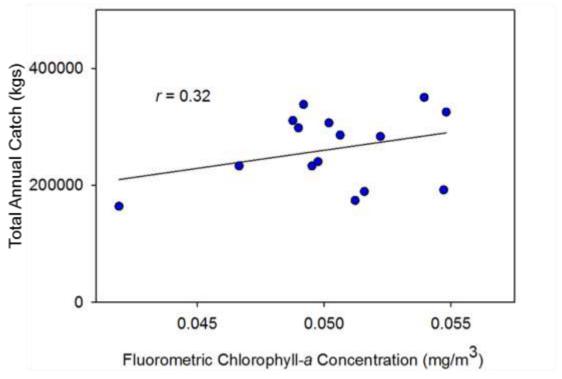


Figure 59. Linear regression between total annual catch (kg) phase lag (t+2 years) and fluorometric chlorophyll-a concentrations (mg/m³) in CNMI from 2000-2014

3.4.1.2 Evaluating relationship for dominant taxa

Out of the many linear regressions completed for catch time series of dominant taxa in the CNMI's recreational coral reef fishery, none of them were determined to be significantly related to the recorded chlorophyll-*a* concentrations from the same area (Table 83). Of the 12 analyzed groups, the three with the strongest (non-significant) relationship with local chlorophyll concentrations were the Serranids, the Acanthurids, and the Holocentrids ($R^2 = 0.20, 0.20, 0.06$, respectively; Figure 60a-c). It is interesting to note that, unlike Guam, the overall relationship between pigment concentration and catch for the entirety of the reef fishery in the region was positive, though non-significant (r = 0.32, p = 0.25), and the strongest determined associations among the analyzed taxa were all positive as well (Table 83).



Figure 60. Linear regressions showing the three top correlations between total annual catch (kg) for the CNMI from creel survey records with phase lag (t+2 years) and fluorometric chlorophyll-*a* concentrations (mg/m³) for (a) Holocentrids, (b) Serranids, and (c) Acanthurids from 2000–2014

3.4.2 Guam

3.4.2.1 Evaluating relationship for entire reef fishery

A plot depicting the comparison of the fluorometric chlorophyll-*a* concentrations and recreational coral reef fishery catch time series from 1998 - 2014 in Guam is shown in Figure 61. Catch levels were relatively variable over the course of the time series when considering the variation in pigment levels (CV=26.2; Figure 61). A gradual drop in total annual catch was observed starting from 1998 before stabilizing in the late 2000s, where recorded catch decreased to approximately a quarter million. and rose back up to over half a million kilograms in more recent years; it is of note that the minimum catch and maximum chlorophyll concentration depicted in this plot both occurred in the year 2005 (Figure 61).

Linear regressions and correlation analyses were conducted for the time series of the Guam recreational coral reef fishery catch (with phase lag) with fluorometric chlorophyll-*a* concentrations (mg/m³) gathered from the Ocean Colour Climate Change Initiative dataset (v3.1) for the 17 years between 1998 and 2014. It was found that the chlorophyll concentrations and total annual catch for the all harvested taxa had a negative relationship between 1989 and 2015, though it was slightly over the threshold of significance (r = -0.45, p = 0.02; Table 84; Figure 62). The association was statistically significant, and it was determined that for every increase of 0.01 mg/m³ in chlorophyll-*a* concentration, catch would approximately decrease by 180,000 kg after two years all of the Guam recreational fishery ($R^2 = 0.20$, p = 0.02; Table 84; Figure 62).

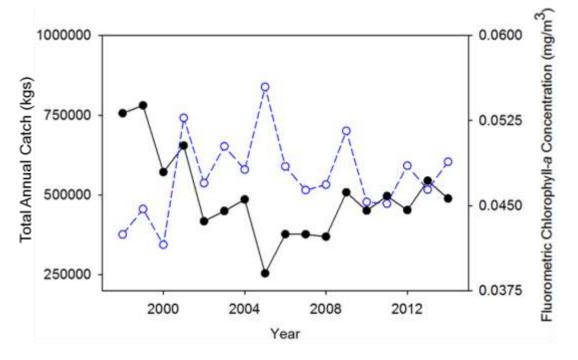


Figure 61. Comparison of Guam recreational reef fish catch for shore-and boat-based creel survey records (kg; black) with two years of time lag (t+2 years) and fluorometric chlorophyll-*a* concentrations (mg/m³; blue) from 1998-2014

Table 84. Correlation coefficients (r) from comparisons of time series of for shore-and boatbased creel survey records in Guam (kg) and fluorometric chlorophyll-*a* concentrations (mg/m³) for 12 top taxa harvested from 1998 - 2014. Significant correlations are indicated in bold (α=0.05)

Taxa Code	Total Catch	LUTJ	LETH	CARA	ACAN	SERR	SIGA	SCAR	MULL	MUGI	LABR	HOLO	BALI
n = 17													
р	0.07	0.62	0.16	0.73	0.44	0.51	0.17	0.42	0.08	0.04	0.47	0.21	0.03
r	-0.45	-0.13	-0.36	-0.09	-0.20	-0.17	-0.35	-0.21	-0.43	-0.50	-0.19	-0.32	-0.53
R ²	0.20	0.02	0.13	0.01	0.04	0.03	0.12	0.04	0.19	0.25	0.03	0.11	0.28

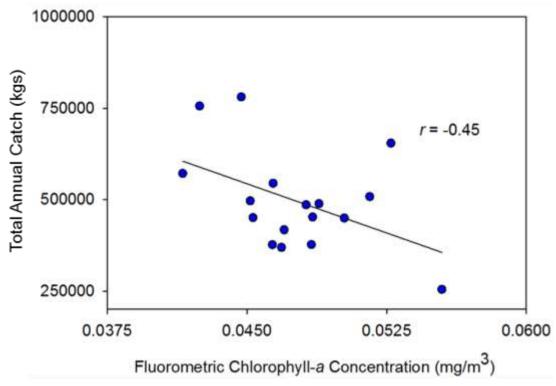


Figure 62. Linear regression between total annual catch (kg) for Guam shore-and boatbased creel survey records with phase lag (t+2 years) and fluorometric chlorophyll-*a* concentrations (mg/m³) from 1998-2014

3.4.2.2 Evaluating relationship for dominant taxa

The several linear regression and correlation analyses performed for time series of catch on the taxa level of Guam's recreational reef fishery showed that for dominant taxa in the fishery, and only two of the 12 analyzed groups had statistically significant relationships with local chlorophyll concentrations: the Balistids and the Mugilids (Table 84). The relationship between catch of species in the Balistidae group and chlorophyll concentration was shown to have negatively significant relationship such that for every increase of 0.01 mg/m³ in chlorophyll-*a* concentration, catch would drop by more than 1,700 kg two years later when harvesting members of the Balistidae family (R²=0.28, p = 0.03; Table 84; Figure 63a). The relationship between to be negatively significant, but to a lesser degree. With a rise of 0.01 mg/m³ in chlorophyll-*a*

levels, recreational catch of the Mugilids would decrease by approximately over 4,600 kg after two years for the group ($R^2=0.25$, p = 0.04; Table 84; Figure 63b;). The next strongest relationship as determined by the regressions was not significant, but was similarly negative (Mullidae; $R^2=0.19$, p=0.08; Table 84; Figure 63c); all four of these potential fishery ecosystem relationships, however, were positive.

In the CNMI, there were no statistically significant relationships discovered between chlorophyll concentrations and any of the 12 prevalent taxa evaluated in this study, nor to the total fishery annual catch in its entirety. The lack of identifiable associations could have been attributed to the relatively short time series of data available for comparison at 15 years. While there were several families observed that had relationships on the cusp of being deemed significant according to resulting coefficients of determination, such as Serranidae and Holocentridae, they were positively associated.

In summary for Guam, it was determined that there existed a negatively significant relationship between reef recreational catch and fluorometric chlorophyll-*a* concentrations (mg/m³) from the Ocean Colour Climate Change Initiative dataset (v3.1) for the entirety of the fishery. For every increase of 0.01 mg/m³ in chlorophyll-*a* concentration, catch would approximately decrease by 180,000 kg across all harvested taxa two years later. Potential statistically significant fishery ecosystem relationships were also observed for the Balistidae and Mugilidae groups, where the catch of each group would decrease by approximately 1,700 and 4,600 kg, respectively, given two years of phase lag with a similar increase in fluorometric chlorophyll.

Uncertainty levels were relatively high in evaluations including chlorophyll-*a* concentrations due to the nature of incorporating phase lag and not smoothing the catch data. The largest issue in performing comparison analyses between catch from reef fisheries in the Mariana Archipelago and fluorometric chlorophyll-*a* concentrations was the relatively short time series (i.e. small sample size). Robust, homogenous time series highlighting interdecadal patterns in these regions were difficult to obtain due to time series merging several sources of chlorophyll concentration to elongate the range of continuous data. For example, the ESA's OCC CCI dataset only permitted the use of less than two decades of data when evaluating the territories with the incorporation of phase lag. The length of the applied lag has a large impact in the patterns observed, so the relatively short extent of the available time series may obfuscate some of the identified relationships.

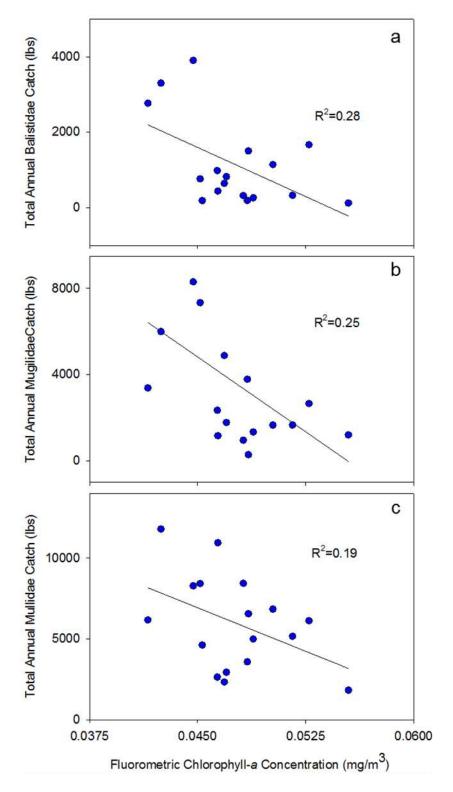


Figure 63. Linear regressions showing the three top correlations between total annual catch (kg) for Guam for shore-and boat-based creel survey records with phase lag (t+2 years) and fluorometric chlorophyll-*a* concentrations (mg/m³) for (a) Balistidae, (b) Mugilidae, and (c) Mullidae from 1998–2014.

3.5 MULTIVARIATE ASSESSMENTS OF OTHER ECOSYSTEM VARIABLES

3.5.1 Non-metric Multidimensional Scaling

There were several other prioritized fishery ecosystem relationships for coral reefs in the Mariana Archipelago involving environmental parameters that were not to be addressed in this initial evaluation including: the Oceanic Niño Index (ONI), the Pacific Decadal Oscillation (PDO), sea level height, pH, dissolved oxygen, and salinity. Further descriptions of these climate and oceanic indicators are available in Section **Error! Reference source not found.** Sea surface height data were aggregated from the Ocean Service, Tides, and Currents, and Sea Level database operated (NOAA/NOS/CO-OPS). Basin-wide data ONI were taken from NOAA's Nation Centers for Environmental Information- Equatorial Pacific Sea Surface Temperature Database (Climate Prediction Center Internet Team 2015). Similarly, PDO data were obtained from NOAA's Earth System Research Laboratory Physical Sciences Division originally derived from OI.v1 and OI.v2 SST parameters (NOAA PDO). Salinity data for American Samoa were gathered from Simple Ocean Data Assimilation (SODA) version 3.3.1 (Carton and Giese 2008). Rainfall estimates were obtained through the National Weather Service in American Samoa (NWS-G).

Non-metric multidimensional scaling (NMS), a form of multivariate analysis that orders sample units along synthetic axes to reveal patterns of composition and relative abundance (Peck, 2016), is most commonly utilized when looking to identify patterns in heterogeneous species response data (Peck, 2016). For this study, NMS was used to help identify associations between coral reef fishery parameters and environmental factors using the program PCORD 7. To ensure the same length of time series for all catch and environmental variables considered, data was analyzed from 1989-2015 to allow for the inclusion of more parameters (e.g. pH) for which longer-term time series were unavailable. The generated axes represent the best fit of patterns of redundancy in the catch data used as input, and the resulting ordination scores are a rank-order depiction of associations in the original dataset.

NMS produces robust results even in the presence of outliers by avoiding parametric and distributional assumptions (Peck, 2016). The only assumption to be met in NMS is that the relationship between the original rank ordered distances between sample units and the reduced distances in the final solution should be monotonic; that is, the slope of the association between the two is flat or positive, as determined by the stress statistic. In the most general terms, interpretable and reliable ordination axes have stress less than 10 up to 25 for datasets with large sample size, but large stress scores (i.e. greater than 30) may suggest that the final ordination results have little association with the original data matrix. Additionally, NMS ordination scores vary depending on the number of dimensions/axes designated to be solved (Peck, 2016). Dimensionality (i.e. number of axes for the final solution) for each test was identified though PCORD result recommendations based on final stress being lower than that for 95% of randomized runs (i.e. $p \le 0.05$). Tau is a statistic that represents the rank correlations of the ordination scores to the original data matrices, and was used to identify explanatory variables with associations to the ordination axes. For the MHI test, data from 13 species/taxa groups from 1989 - 2015 (27 years) were included along with 10 variables of environmental data collected during the same time period.

3.5.1.1 CNMI

The resulting ordination scores from the NMS analysis performed on boat-based expanded creel survey catch records and the previously mentioned environmental parameters recommended a one dimensional solution, which accounting for 87.2% of the cumulated variance observed in the CNMI boat-based creel survey data. The NMS final stress was morderate for the real runs (13.9), but low relative to stress from the randomization runs (31.0; Figure 64). The final ordination scores for the families considered were scaled on a gradient relative to the individual ordination axis, the overlying environmental joint biplot is situated to the left of the final ordination points (Figure 64).

The only environmental parameter included in this analysis that displayed a significant relationship with the lone axis was PDO, though that association was negative. (tau = -0.47), Although this NMS run was not able to identify any other environmental parameters significantly correlated to the ordination axis, additionally relatively strong associations exist between sea level height (tau = 0.33) and pH (-0.31; Figure 65). Replicate NMS runs had similar stress levels for the final generated result.

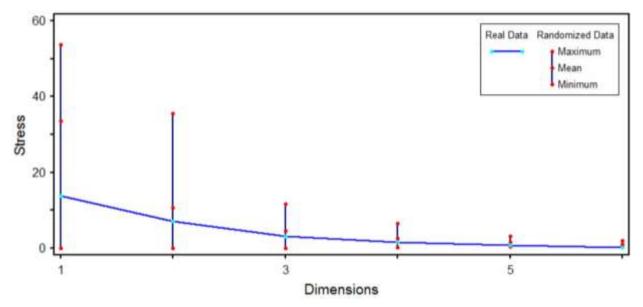
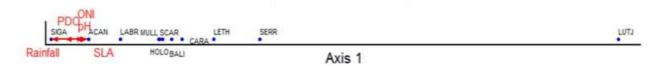



Figure 64. NMS scree plot showing the stress test to determine dimensionality for the final solution for the CNMI multivariate analysis; a one-axis solution was recommended

Figure 65. One-dimensional scatterplot overlaid with a joint biplot depicting ordination scores resulting from an NMS analysis on creel survey expanded catch data and prominent environmental parameters in the CNMI from 2000-2014

3.5.1.2 Guam

The Guam NMS identified two orthogonal axes for the final solution that accounted for 93.6% of the cumulative observed variance in shore- and boat-based creel survey data from Guam. The final stress for the Guam NMS barely less than 10, though it was notable lower than the average final stress from randomizations (14.2; Figure 66). A majority of the families were clustered in ordination space, with the notable exception of Carangidae (Figure 67).

The final ordination scores for the Guam NMS did not show any environmental parameters with a statistically significant correlation to the first axis ($r^2 = 0.62$; Figure 67). SST (tau = -0.50) and SSTA (tau = -0.50) were both negatively associated with the Axis 2 ($r^2 = 0.32$), and pH had a significantly positive relationship with the axis (tau = 0.56). Additionally, Axis 2 was shown to also be negatively associated with pH (tau = -0.37; Figure 67). Replicate NMS runs had similar stress levels for the final generated result.

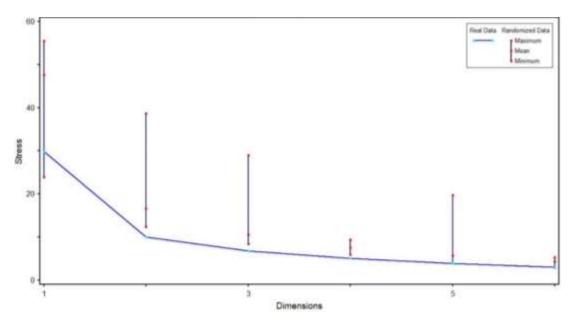
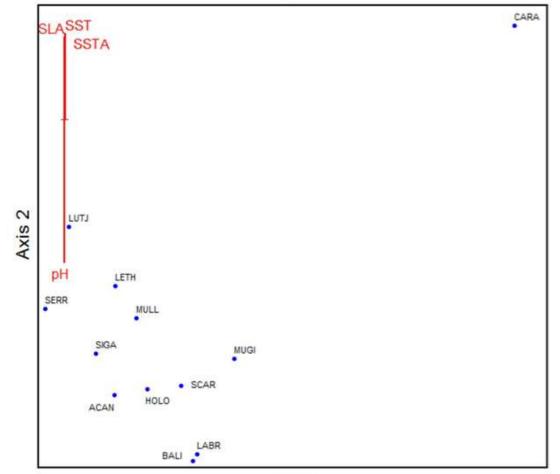



Figure 66. NMS scree plot showing the stress test to determine dimensionality for the final solution for the Guam multivariate analysis; two-axis solution was recommended

Axis 1

Figure 67. Two-dimensional scatterplot overlaid with a joint biplot depicting ordination scores resulting from an NMS analysis on creel survey expanded catch data and prominent environmental parameters in Guam from 1989-2014

Ultimately, stress values for all analyses were relatively low, suggesting that the generated ordination scores were robust and useful for interpretation relative to the ordination axes. Nearly all included environmental parameters had a statistically significant relationship with at least one ordination axis in at least one of the final solutions, suggesting that these parameters likely intertwine in complicated processes to produce observed impacts on coral reef fisheries in the U.S. Western Pacific. Though a fishery ecosystem relationship may have not been explicitly identified in NMS runs of this preliminary evaluation, it does not preclude the possibility that an association may still exist.

3.6 REFERENCES

Ansell, A.D., Gibson, R.N., Barnes, M., and Press, U.C.L., 1996. Coastal fisheries in the Pacific Islands. *Oceanography and Marine Biology: an annual review*, *34*(395), 531 p.

- Behrenfeld, M.J., T O'Malley, R., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M. and Boss, E.S., 2006. Climate-driven trends in contemporary ocean productivity. *Nature*, 444(7120), 752 p.
- Carton, J.A. and Giese B.S., 2008. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA), *Mon. Weather Rev.*, *136*, pp. 2999-3017.
- Climate Prediction Center Internet Team, 2015. Cold and warm episodes by season. NOAA Center for Weather and Climate Prediction, Maryland, United States. Accessed March 2017. Available from <u>http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml</u>.
- Hawhee, J.M., 2007. Western Pacific Coral Reef Ecosystem Report. Report prepared for the Western Pacific Regional Fishery Management Council, Honolulu, HI 96813 USA, 185.
- Islam, M.S., and Tanaka, M., 2004. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. *Marine pollution bulletin*, *48*(7), pp. 624-649.
- Kitiona, F., Spalding, S., and Sabater, M., 2016. The impacts of climate change on coastal fisheries in American Samoa. University of Hawaii at Hilo, HI 96720 USA, 18 p.
- Longhurst, A.R. and Pauly, D., 1987. The Ecology of Tropical Oceans. *Academic Press Inc.,London*, 407 p.
- McClanahan, T.R., Graham, N.A., MacNeil, M.A., Muthiga, N.A., Cinner, J.E., Bruggemann, J.H., and Wilson, S.K., 2011. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. *Proceedings of the National Academy of Sciences*, 108(41), pp.17230-17233.
- Messié, M. and Radenac, M.H., 2006. Seasonal variability of the surface chlorophyll in the western tropical Pacific from SeaWiFS data. *Deep Sea Research Part I: Oceanographic Research Papers*, *53*(10), pp. 1581-1600.
- NOAA/NESDIS/OceanWatch Central Pacific, n.d. OceanWatch Sea-surface Temperature, AVHRR Pathfinder v5.0 + GAC – Monthly. NOAA, Maryland, USA. Accessed March 2017. Available from http://oceanwatch.pifsc.noaa.gov/thredds/dodsC/pfgac/monthly>.
- NOAA/NOS/CO-OPS, n.d. Observed Water Levels. NOAA, Maryland, United States. Accessed March 2017. Available from <u>https://tidesandcurrents.noaa.gov/waterlevels.html</u>.
- NOAA PDO, n.d. Pacific Decadal Oscillation Index. NOAA, Maryland, United States. Accessed March 2017. Available from <u>http://research.jisao.washington.edu/pdo/PDO.latest</u>.
- NWS-G, n.d. National Weather Service Forecast Office, Tiyan, Guam. NOAA National Weather Service. Accessed March 2017.

- Ocean Colour Climate Change Initiative dataset, Version 3.1, European Space Agency. Accessed August 2017. Available from http://www.esa-oceancolour-cci.org/>.
- Ochavillo, D., 2012. Coral Reef Fishery Assessment in American Samoa. Department of Marine and Wildlife Resources, Pago Pago, American Samoa 96799 USA, 29 p.
- Peck, J.E., 2016. Multivariate Analysis for Ecologists: Step-by- Step, Second edition. MjM Software Design, Gleneden Beach, OR. 192 p.
- Remington, T.R. and Field, D.B., 2016. Evaluating biological reference points and data-limited methods in Western Pacific coral reef fisheries. Report prepared for the Western Pacific Regional Fishery Management Council, Honolulu, HI 96813 USA, 134 p.
- Roemmich, D. and McGowan, J., 1995. Climatic warming and the decline of zooplankton in the California Current. *Science: New York then Washington*, pp. 1324-1324.
- Richards B.L., Williams I.D., Vetter O.J., and Williams G.J., 2012. Environmental factors affecting large-bodied coral reef fish assemblages in the Mariana Archipelago. *PLoS ONE* 7(2), e31374.
- Weng, K.C. and Sibert, J.R., 2000. Analysis of the Fisheries for two pelagic carangids in Hawaii. Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, HI 96822 USA, 78 p.
- Williams, I.D., Baum, J.K., Heenan, A., Hanson, K.M., Nadon, M.O., and Brainard, R.E., 2015. Human, Oceanographic and Habitat Drivers of Central and Western Pacific Coral Reef Fish Assemblages. *PLoS ONE 10*(5): e0129407.

APPENDIX A: LIST OF MANAGEMENT UNIT SPECIES

CNMI

1. Bottomfish Multi-species Stock Complex (FSSI)

DFW Creel Species Code	Species Name	Scientific Name		
214	red snapper, silvermouth (lehi)	Aphareus rutilans		
213	grey snapper, jobfish	Aprion virescens		
112	giant trevally, jack	Caranx ignoblis		
111	black trevally, jack	Caranx lugubris		
231	blacktip grouper	Epinephelus fasciatus		
241	lunartail grouper (lyretail grouper)	Variola lauti		
203	red snapper (ehu)	Etelis carbunculus		
210	red snapper (onaga)	Etelis coruscans		
none	ambon emperor	Lethrinus amboinenis		
350	redgill emperor	Lethrinus rubrioperculatus		
253	blueline snapper	Lutjanus kasmira		
none	yellowtail snapper	Pristipomoides auricilla		
212	pink snapper (paka)	Pristipomoides filamentosus		
209	yelloweye snapper	Pristipomoides flavipinnis		
207	pink snapper (kalekale)	Pristipomoides seiboldi		
204	flower snapper (gindai)	Pristipomoides zonatus		
220	amberjack	Seriola dumerili		

2. Crustacean deep-water shrimp complex (non-FSSI)

DFW Creel Species Code	Species Name	Scientific Name
508	deepwater shrimp	Heterocarpus spp.

3. Crustacean spiny lobster complex (non-FSSI)

DFW Creel Species Code	Species Name	Scientific Name
504	spiny lobster	Panulirus marginatus
504	spiny lobster	Panulirus penicillatus

4. Crustacean slipper lobster complex (non-FSSI)

DFW Creel Species Code	Species Name	Scientific Name
505	Slipper lobster	Scyllaridae

5. Crustacean Kona crab complex (non-FSSI)

DFW Creel Species Code	Species Name	Scientific Name
502	Kona crab	Ranina ranina

6. Precious coral black coral complex (non-FSSI)

DFW Creel Species Code	Species Name	Scientific Name
none	Black Coral	Anitpathes dichotoma
none	Black Coral	Antipathes grandis
none	Black Coral	Antipathes ulex

DFW Creel Species Code	Species Name	Scientific Name
none	Pink coral	Corallium secundum
none	Pink coral	Corallium regale
none	Pink coral	Corallium laauense
none	Bamboo coral	Lepidisis olapa
none	Bamboo coral	Acanella spp.
none	Gold Coral	Gerardia spp.
none	Gold Coral	Callogorgia gilberti
none	Gold Coral	Narella spp.
none	Gold Coral	Calyptrophora spp.

7. Exploratory area precious coral (except black coral; non-FSSI)

8. Coral reef ecosystem (non-FSSI)

DFW Creel Species Code	Species Name	Scientific Name	Grouping
357	Bigeye Emperor	Monotaxis grandoculus	Lethrinidae
353	Blackspot Emperor	Lethrinus harak	Lethrinidae
310	Emperor (mafute/misc.)	Lethrinus sp.	Lethrinidae
356	Flametail Emperor	Lethrinus fulvus	Lethrinidae
351	Longnose Emperor	Lethrinus olivaceus	Lethrinidae
352	Orangefin Emperor	Lethrinus erythracanthus	Lethrinidae
361	Ornate Emperor	Lethrinus ornatus	Lethrinidae
358	Stout Emperor	Gymnocranius sp.	Lethrinidae
355	Yellowlips Emperor	Lethrinus xanthochilis	Lethrinidae
359	Yellowspot emperor	Gnathodentex aurolineatus	Lethrinidae
354	Yellowstripe Emperor	Lethrinus obsoletus	Lethrinidae
362	Yellowtail Emperor	Lethrinus atkinsoni	Lethrinidae
115	Bigeye Trevally	Caranx sexfasciatus	Carangidae
113	Bluefin Trevally	Caranx melampygus	Carangidae
114	Brassy Trevally	Caranx papuesis	Carangidae
105	EE: Juvenile Jacks	Canranx sp.	Carangidae
104	Jacks (misc.)	<i>Caranx</i> sp.	Carangidae
101	Leatherback	Scomberoides lysan	Carangidae

103	Mackerel Scad	Decapterus macarellus	Carangidae
410	Rainbow Runner	Elagatis bipinnulatus	Carangidae
117	Small-spotted pompano	Trachinotus bailloni	Carangidae
116	Snubnose pompano	Trachinotus blochii	Carangidae
110	Yellow Spotted Trevally	Carangoides orthogrammus	Carangidae
380	Bluebanded Surgeonfish	Acanthurus lineatus	Acanthuridae
383	Bluelined Surgeon	Acanthurus nigroris	Acanthuridae
384	Bluespine Unicornfish	Naso unicornis	Acanthuridae
381	Convict Tang	Acanthurus triostegus	Acanthuridae
319	Orangespine Unicornfish	Naso lituratus	Acanthuridae
318	Surgeonfish (misc.)	Acanthurus sp.	Acanthuridae
320	Unicornfish (misc.)	Naso sp.	Acanthuridae
382	Yellowfin Surgeonfish	Acanthurus xanthopterus	Acanthuridae
102	Bigeye Scad	Selar crumenopthalmus	Atulai
239	Coral Grouper	Epinephelus corallicola	Serranidae
237	Flagtail Grouper	Cephalopholis urodeta	Serranidae
206	Grouper (misc.)	Serannidae	Serranidae
233	Highfin Grouper	Epinephelus maculatus	Serranidae
234	Honeycomb Grouper	Epinephelus merra	Serranidae
235	Marbled Grouper	Epinephelus polyphekadion	Serranidae
236	Peacock Grouper	Cephalopholis argus	Serranidae
244	Pink Grouper	Saloptia powelli	Serranidae
238	Saddleback Grouper	Plectropomus laevis	Serranidae
242	Tomato Grouper	Cephanopholis sonnerati	Serranidae
240	White Lyretail Grouper	Variola albimarginata	Serranidae
243	Yellow Banded Grouper	Cephalopholis igarashiensis	Serranidae
316	Snapper (misc. shallow)	Lutjanidae	Lutjanidae
250	Humpback Snapper	Lutjanus gibbus	Lutjanidae
251	Onespot Snapper	Lutjanus monostigmus	Lutjanidae
254	Red Snapper	Lutjanus bohar	Lutjanidae
208	Smalltooth Jobfish	Aphareus furca	Lutjanidae
371	Dash & Dot Goatfish	Parupeneus barberrinus	Mullidae
321	Goatfish (juvenile-misc)	Mullidae	Mullidae
322	Goatfish (misc.)	Mullidae	Mullidae
323	Sidespot Goatfish	Parupeneus pleurostigma	Mullidae
372	Two-barred Goatfish	Parupeneus bifasciatus	Mullidae
370	Yellowstripe Goatfish	Mulloidichthys flavolineatus	Mullidae
314	Parrotfish (misc.)	Scarus sp.	Scaridae
315	Seagrass Parrotfish	Leptoscarus vaigiensis	Scaridae

506	Octopus	Octopus i.	Mollusk
510	Squid	Teuthida	Mollusk
516	Trochus	Trochus sp.	Mollusk
522	Clam/bivalve	Bivalvia	Mollusk
106	Mullet	Mugilidae	Mugilidae
304	Rabbitfish (hitting)	Siganus sp.	Siganidae
306	Rabbitfish (h.feda)	Siganus puntatus	Siganidae
307	Rabbitfish (menahac)	Siganus sp.	Siganidae
308	Rabbitfish (sesjun)	Siganus spinus	Siganidae
	Bolbometopon muricatum	Bumphead parrotfish	
391	Cheilinus undulatus	Napoleon wrasse	
	Reef sharks (misc)	Carcharhinidae	Carcharhinidae
	Hammerhead shark	Sphyrnidae	Carcharhinidae
338	Angelfish	Pomacanthidae	Other CRE-Finfish
338	Butterflyfish	Chaetodontidae	Other CRE-Finfish
324	Bigeye/glasseye	Heteropriacanthus cruentatus	Other CRE-Finfish
396	Blue Razorfish	Xyrichtys pavo	Other CRE-Finfish
397	Bronzespot Razorfish	Xyrichtys celebicus	Other CRE-Finfish
260	Cardinal Misc.	Apogonidae	Other CRE-Finfish
162	Cornetfish	Fistularia commersonii	Other CRE-Finfish
332	Damselfish	Pomacentridae	Other CRE-Finfish
341	Filefish (misc)	Monacanthidae	Other CRE-Finfish
340	Flounder (misc)	Bothus sp.	Other CRE-Finfish
328	Fusilier (misc.)	Caesionidae	Other CRE-Finfish
325	Goggle-eye	Priacanthus hamrur	Other CRE-Finfish
195	Lizardfish misc.	Synodontidae	Other CRE-Finfish
180	Milkfish	Chanos chanos	Other CRE-Finfish
329	Mojarra	Gerres sp.	Other CRE-Finfish
140	Moray eel	Muraenidae	Other CRE-Finfish
170	Needlefish	Belonidae	Other CRE-Finfish
343	Picasso Trigger	Rhinecanthus aculeatus	Other CRE-Finfish
348	Pufferfish	Tetraodontidae	Other CRE-Finfish
395	Razorfish (misc)	Tribe Novaculini	Other CRE-Finfish
130	Scorpionfishes	Scorpaenidae	Other CRE-Finfish
330	Sweetlips	Plectorhinchus picus	Other CRE-Finfish
342	Triggerfish (misc.)	Balistidae	Other CRE-Finfish
163	Trumpetfish	Aulostomus chinensis	Other CRE-Finfish
344	Wedge Trigger	Rhinecanthus rectangulus	Other CRE-Finfish
312	Squirrelfish	Holocentridae	Squirrelfish

313	Soldierfish (misc.)	Holocentridae	Squirrelfish
302	Wrasse	Labridae	Wrasse
390	Tripletail Wrasse	Cheilinus trilobatus	Wrasse
309	Rudderfish (guilli)	Kyphosus sp.	Rudderfish
373	Highfin Rudderfish Silver	Kyphosus cinerascens	Rudderfish
374	Highfin Rudderfish Brown	Kyphosus sp.	Rudderfish
200	Bottomfish (misc)	n/a	Misc. Bottomfish
300	Reef fish (misc)	n/a	Misc. Reef Fish
	Shallow bottom	n/a	Misc. Shallow bottomfish
501	Crabs (misc)	n/a	Crustaceans
503	Coconut Crab	Birgus latro	Crustaceans
500	Invertebrates	n/a	Other Invertebrates
514	Sea Cucumber	Cucumariidae	Other Invertebrates
600	Seaweeds	n/a	Algae
602	Lemu	n/a	Algae

GUAM

1. Bottomfish Multi-species Stock Complex (FSSI)

DAWR Creel Species Code	Species Name	Scientific Name
32302	red snapper, silvermouth (lehi)	Aphareus rutilans
32303	grey snapper, jobfish	Aprion virescens
31404	giant trevally, jack	Caranx ignoblis
31405	black trevally, jack	Caranx lugubris
28919	blacktip grouper	Epinephelus fasciatus
28941	lunartail (lyretail) grouper	Variola lauti
32304	red snapper (ehu)	Etelis carbunculus
32305	red snapper (onaga)	Etelis coruscans
32818	ambon emperor	Lethrinus amboinenis
32809	redgill emperor	Lethrinus rubrioperculatus
32310	blueline snapper	Lutjanus kasmira
32317	yellowtail snapper	Pristipomoides auricilla
32318	pink snapper (paka)	Pristipomoides filamentosus
32319	yelloweye snapper	Pristipomoides flavipinnis
32320	pink snapper (kalekale)	Pristipomoides seiboldi
32321	snapper (gindai)	Pristipomoides zonatus
31414	amberjack	Seriola dumerili

2. Crustacean deep-water shrimp complex (non-FSSI)

DAWR Creel Species Code	Species Name	Scientific Name
67600	deepwater shrimp	Heterocarpus spp.
67601	deepwater shrimp	Pandalus unid sp.
67602	deepwater shrimp	Pandalidae
67603	deepwater shrimp	Pandalidae

3. Crustacean spiny lobster complex (non-FSSI)

DAWR Creel Species Code	Species Name	Scientific Name
67913	spiny lobster	Panulirus marginatus
67915	spiny lobster	Panulirus penicillatus

4. Crustacean slipper lobster complex (non-FSSI)

DAWR Creel Species Code	Species Name	Scientific Name
67954	slipper lobster	Scyllaridae
67955	slipper lobster	Scyllaridae

5. Crustacean Kona crab complex (non-FSSI)

DAWR Creel Species Code	Species Name	Scientific Name
69150	Kona crab	Ranina ranina

6. Precious coral black coral complex (non-FSSI)

DAWR Creel Species Code	Species Name	Scientific Name
none	Black Coral	Anitpathes dichotoma
none	Black Coral	Antipathes grandis
none	Black Coral	Antipathes ulex

DAWR Creel Species Code	Species Name	Scientific Name	
none	Pink coral	Corallium secundum	
none	Pink coral	Corallium regale	
none	Pink coral	Corallium laauense	
none	Bamboo coral	Lepidisis olapa	
none	Bamboo coral	Acanella spp.	
none	Gold Coral	Gerardia spp.	
none	Gold Coral	Callogorgia gilberti	
none	Gold Coral	Narella spp.	
none	Gold Coral	Calyptrophora spp.	

7. Exploratory area precious coral (except black coral) (non-FSSI)

8. Coral reef ecosystem (non-FSSI)

DAWR Creel Species Code	Species Name	Scientific Name	Species grouping
41201	Achilles tang	Acanthurus achilles	Acanthuridae
41232	Bariene's surgeonfish	Acanthurus bariene	Acanthuridae
41207	Ringtail surgeonfish	Acanthurus blochii	Acanthuridae
41234	Chronixis surgeonfish	Acanthurus chronixis	Acanthuridae
41202	Eye-striped surgeonfish	Acanthurus dussumieri	Acanthuridae
41204	Whitespotted surgeonfish	Acanthurus guttatus	Acanthuridae
41239	Whitebar surgeonfish	Acanthurus leucocheilus	Acanthuridae
41205	Palelipped surgeonfish	Acanthurus leucopareius	Acanthuridae
41206	Blue-banded surgeonfish	Acanthurus lineatus	Acanthuridae
41235	White-Freckled surgeonfish	Acanthurus maculiceps	Acanthuridae
41233	Elongate surgeonfish	Acanthurus mata	Acanthuridae
41203	Whitecheek surgeonfish	Acanthurus nigricans	Acanthuridae
41208	Blackstreak surgeonfish	Acanthurus nigricauda	Acanthuridae
41209	Brown surgeonfish	Acanthurus nigrofuscus	Acanthuridae
41210	Bluelined surgeonfish	Acanthurus nigroris	Acanthuridae
41240	Surgeonfish	Acanthurus nubilus	Acanthuridae
41211	Orangeband surgeonfish	Acanthurus olivaceus	Acanthuridae
41212	Mimic surgeonfish	Acanthurus pyroferus	Acanthuridae

41243	Surgeonfishes/tangs	Acanthuridae	Acanthuridae
41200	Surgeonfishes/tangs	Acanthuridae	Acanthuridae
41213	Thomson's surgeonfish	Acanthurus thompsoni	Acanthuridae
41214	Convict tang	Acanthurus triostegus	Acanthuridae
41215	Yellowfin surgeonfish	Acanthurus xanthopterus	Acanthuridae
41216	Twospot bristletooth	Ctenochaetus binotatus	Acanthuridae
41217	Black surgeonfish	Ctenochaetus hawaiiensis	Acanthuridae
41236	Blue-spotted Bristletooth	Ctenochaetus marginatus	Acanthuridae
41218	Striped bristletooth	Ctenochaetus striatus	Acanthuridae
41231	Yellow-eyed bristletooth	Ctenochaetus strigosus	Acanthuridae
41237	Tomini's surgeonfish	Ctenochaetus tominiensis	Acanthuridae
41219	Whitemargin unicornfish	Naso annulatus	Acanthuridae
41220	Humpback unicornfish	Naso brachycentron	Acanthuridae
41221	Spotted unicornfish	Naso brevirostris	Acanthuridae
41241	Gray unicornfish	Naso caesius	Acanthuridae
41222	Black tongue unicornfish	Naso hexacanthus	Acanthuridae
41223	Orangespine unicornfish	Naso lituratus	Acanthuridae
41238	Naso tang	Naso lopezi	Acanthuridae
41242	Barred unicornfish	Naso thynnoides	Acanthuridae
41224	Humpnose unicornish	Naso tuberosus	Acanthuridae
41225	Bluespine unicornfish	Naso unicornis	Acanthuridae
41226	Bignose unicornfish	Naso vlamingii	Acanthuridae
41227	Hepatus tang	Paracanthurus hepatus	Acanthuridae
41228	Yellow tang	Zebrasoma flavescens	Acanthuridae
41229	Brown tang	Zebrasoma scopas	Acanthuridae
41230	Pacific sailfin tang	Zebrasoma veliferum	Acanthuridae
31401	Pennantfish/threadfin	Alectis ciliaris	Carangidae
31402	Malabar Trevally	Alectis indicus	Carangidae
31400	Jack (misc)	Carangidae	Carangidae
31420		Carangini	Carangidae
31419	Blue kingfish trevally	Carangoides caeruleopinnatus	Carangidae
31431	Shadow kingfish	Carangoides dinema	Carangidae
31431	Bar jack	Carangoides ferdau	Carangidae
31422			-
	Yellow dotted trevally Headnotch trevally	Carangoides fulvoguttatus	Carangidae
31438	,	Carangoides hedlandensis	Carangidae
31403	Goldspot trevally	Carangoides orthogrammus	Carangidae
31424	Barcheek trevally	Carangoides plagiotaenia	Carangidae
31425	Jacks (misc)	Carangoides talamparoides	Carangidae
31437	Trevally	Carangoides uii	Carangidae
31429	Trevally	Caranx i'e'	Carangidae

31406	Bluefin trevally	Caranx melampygus	Carangidae
31428	Brassy trevally	Caranx papuensis	Carangidae
31407	Bigeye trevally	Caranx sexfasciatus	Carangidae
31408	Mackerel scad	Decapterus macarellus	Carangidae
31423	Mackerel scad	Decapterus macrosoma	Carangidae
31421	Round scad	Decapterus maruadsi	Carangidae
31430	Round scad	Decapterus russelli	Carangidae
31409	Rainbow runner	Elagatis bipinnulatus	Carangidae
31410	Golden trevally	Gnathanodon speciosus	Carangidae
31439		Megalaspis cordyla	Carangidae
31435	Pilotfish	Naucrates ductor	Carangidae
31440	Elagatis, Scomberoides	Naucratini	Carangidae
31412	Leatherback	Scomberoides lysan	Carangidae
31415	Almaco jack	Seriola rivoliana	Carangidae
31416	Small spotted pompano	Trachinotus bailloni	Carangidae
31417	Silver or Snubnose	Trachinotus blochii	Carangidae
	pompano		
31432	Mandibular kingfish	Ulua mandibularis	Carangidae
31418	Kingfish	Uraspis helvola	Carangidae
31436	Deep trevally	Uraspis secunda	Carangidae
31434	Whitemouth trevally	Uraspis uraspis	Carangidae
31413	Atulai	Selar crumenophthalmus	Atulai
31426	Atulai	Atule mate	Atulai
31427	Atulai	Selar boops	Atulai
32800	Emperors	Lethrinidae	Lethrinidae
32801	Yellow-Spot Emperor	Gnathodentex aurolineatus	Lethrinidae
32802	Grey Bream	Gymnocranius griseus	Lethrinidae
32804	Thumbprint Emperor	Lethrinus harak	Lethrinidae
32805	Yellowtail Emperor	Lethrinus atkinsoni	Lethrinidae
32806	Longface Emperor	Lethrinus olivaceus	Lethrinidae
32807	Ornate Emperor	Lethrinus ornatus	Lethrinidae
32808	Orange-Striped Emperor	Lethrinus obsoletus	Lethrinidae
32810	Black-Blotch Emperor	Lethrinus semicinctus	Lethrinidae
32811	Yellowlip Emperor	Lethrinus xanthochilus	Lethrinidae
32812	Bigeye Emperor	Monotaxis grandoculus	Lethrinidae
32813	Japanese Bream	Gymnocranius euanus	Lethrinidae
32814	Orange-Spotted Emperor	Lethrinus erythracanthus	Lethrinidae
32815	Large-Eye Bream	Wattsia mossambica	Lethrinidae
32816	Stout Emperor	Gymnocranius sp	Lethrinidae
32817	Smtoothed Emperor	Lethrinus microdon	Lethrinidae

32819	Longspine Emperor	Lethrinus genivittatus	Lethrinidae
32820	Pinkear Emperor	Lethrinus lentjan	Lethrinidae
32821	Blue-Spotted Bream	Gymnocranius microdon	Lethrinidae
32822	Longfin Emperor	Lethrinus erythropterus	Lethrinidae
32823	Blue-Lined Bream	Gymnocranius grandoculus	Lethrinidae
32824	Slender Emperor	Lethrinus variegatus	Lethrinidae
36402	Bucktooth Parrotfish	Calotomus carolinus	Scaridae
36420	Spineytooth Parrotfish	Calotomus spinidens	Scaridae
36403	Bicolor Parrotfish	Cetoscarus bicolor	Scaridae
36422	Parrotfish	Chlorurus bleekeri	Scaridae
36431	Parrotfish	Chlorurus bowersi	Scaridae
36408	Tan-Faced Parrotfish	Chlorurus frontalis	Scaridae
36410	Steephead Parrotfish	Chlorurus microrhinos	Scaridae
36433	Parrotfish	Chlorurus pyrrhurus	Scaridae
36416	Bullethead Parrotfish	Chlorurus sordidus	Scaridae
36404	Parrotfish	Hipposcarus longiceps	Scaridae
36405	Seagrass Parrotfish	Leptoscarus vaigiensis	Scaridae
36400	Parrotfishes	Scaridae	Scaridae
36406	Fil-Finned Parrotfish	Scarus altipinnis	Scaridae
36429	Parrotfish	Scarus chameleon	Scaridae
36423	Parrotfish	Scarus dimidiatus	Scaridae
36419	Parrotfish	Scarus festivus	Scaridae
36434	Yellowfin Parrotfish	Scarus flavipectoralis	Scaridae
36417	Tricolor Parrotfish	Scarus forsteni	Scaridae
36407	Vermiculate Parrotfish	Scarus frenatus	Scaridae
36409	Blue-Barred Parrotfish	Scarus ghobban	Scaridae
36411	Parrotfish	Scarus globiceps	Scaridae
36424	Java Parrotfish	Scarus hypselosoma	Scaridae
36418	Parrotfish	Scarus sp.	Scaridae
36432	Black Parrotfish	Scarus niger	Scaridae
36412	Parrotfish	Scarus oviceps	Scaridae
36425	Greenthroat Parrotfish	Scarus prasiognathos	Scaridae
36413	Pale Nose Parrotfish	Scarus psittacus	Scaridae
36426	Parrotfish	Scarus quoyi	Scaridae
36427	Parrotfish	Scarus rivulatus	Scaridae
36414	Parrotfish	Scarus rubroviolaceus	Scaridae
36415	Chevron Parrotfish	Scarus schlegeli	Scaridae
36428	Parrotfish	Scarus spinus	Scaridae
36435	Tricolor Parrotfish	Scarus tricolor	Scaridae

36421	Parrotfish	Scarus xanthopleura	Scaridae
33200	Goatfishes	Mullidae	Mullidae
33201	Yellowstriped Goatfish	Mulloidichthys flavolineatus	Mullidae
33202	Orange Goatfish	Mulloidichthys pflugeri	Mullidae
33219	Juvenile Goatfish	Mulloidichthys ti'ao	Mullidae
33203	Yellowfin Goatfish	Mulloidichthys vanicolensis	Mullidae
33216		Parupeneus barberinoides	Mullidae
33204	Dash And Dot Goatfish	Parupeneus barberinus	Mullidae
33205		Parupeneus bifasciatus	Mullidae
33210	White-Lined Goatfish	Parupeneus ciliatus	Mullidae
33206	Yellow Goatfish	Parupeneus cyclostomus	Mullidae
33208	Redspot Goatfish	Parupeneus heptacanthus	Mullidae
33214	Indian Goatfish	Parupeneus indicus	Mullidae
33211	Multibarred Goatfish	Parupeneus multifasciatus	Mullidae
33209	Sidespot Goatfish	Parupeneus pleurostigma	Mullidae
33217	Goatfish	Parupeneus sp.	Mullidae
33218	Goatfish	Upeneus arge	Mullidae
33212	Band-Tailed Goatfish	Upeneus taeniopterus	Mullidae
33215	Blackstriped Goatfish	Upeneus tragula	Mullidae
33213	Yellowbanded Goatfish	Upeneus vittatus	Mullidae
54501	Spiney Chiton	Acanthopleura spinosa	Mollusks
54410	Bubble Shells, Sea Hares	Acteonidae	Mollusks
54603	Antique Ark	Anadara antiquata	Mollusks
54602	Indo-Pacific Ark	Arca navicularis	Mollusks
54601	Ventricose Ark	Arca ventricosa	Mollusks
54600	Ark Shells	Arcidae	Mollusks
57742	Common Paper Nautilus	Argonauta argo	Mollusks
57745	Gruner'S Paper Nautilus	Argonauta gruneri	Mollusks
57741	Brown Paper Nautilus	Argonauta hians	Mollusks
57743	Nodose Paper Nautilus	Argonauta nodosa	Mollusks
57744	Noury'S Paper Nautilus	Argonauta nouri	Mollusks
57740	Paper Nautiluses	Argonautidae	Mollusks
56896	Pacific Sand Clam	Asaphis violescens	Mollusks
56891	Gaudy Sand Clam	Aspaphis deflorata	Mollusks
51751	Peron'S Sea Butterfly	Atlanta peroni	Mollusks
51750		Atlantidae	Mollusks
54424	Wh Pacific Atys	Atys naucum	Mollusks
54604	Almond Ark	Babatia amygdalumtostum	Mollusks
50840	Goblets, Dwarf Tritons	Buccinidae	Mollusks

54421	Ampule Bubble	Bulla ampulla	Mollusks
54420	Bubble Shells	Bullidae	Mollusks
54422	Lined Bubble	Bullina lineata	Mollusks
50796	Giant Frog Shell	Bursa bubo	Mollusks
50791	Warty Frog Shell	Bursa bufonia	Mollusks
50792	Blood-Stain Frog Shell	Bursa cruentata	Mollusks
50793	Granulate Frog Shell	Bursa granularis	Mollusks
50799	Lamarck'S Frog Shell	Bursa lamarcki	Mollusks
50798	Red-Mth Frog Shell	Bursa lissostoma	Mollusks
50794	Udder Frog Shell	Bursa mammata	Mollusks
50797	Ruddy Frog Shell	Bursa rebeta	Mollusks
50795	Wine-Mth Frog Shell	Bursa rhodostoma	Mollusks
50790	Frog Shells	Bursidae	Mollusks
50751	Umbilicate Ovula	Calpurnus verrucosus	Mollusks
50878	File Miter	Cancilla filaris	Mollusks
50842	Smoky Goblet	Cantharus fumosus	Mollusks
50841	Waved Goblet	Cantharus undosus	Mollusks
56721	Varitated Cardita	Cardita variegata	Mollusks
56720	Carditid Clams	Carditidae	Mollusks
50767	Vibex Bonnet	Casmaria erinaceus	Mollusks
50768	Heavy Bonnet	Casmaria ponderosa	Mollusks
50765	Helmet Shells	Cassidae	Mollusks
50766	Horned Helmet	Cassius cornuta	Mollusks
55022	3-Toothed Cavoline	Cavolina tridentata	Mollusks
55023	Unicate Cavoline	Cavolina uncinata	Mollusks
55021	Sea Butterfly	Cavolinia cf globulosa	Mollusks
55020	Sea Butterflies	Cavolinidae	Mollusks
50650	Turret,Worm-Shells	Cerithiidae	Mollusks
50654	Column Certh	Cerithium columna	Mollusks
50651	Giant Knobbed Certh	Cerithium nodulosum	Mollusks
56711	Lazarus Jewel Box	Chama lazarus	Mollusks
56710	Jewel Boxes	Chamidae	Mollusks
50781	Triton Trumpet	Charonia tritonis	Mollusks
50812	Ramose Murex	Chicoreus ramosus	Mollusks
54500	Chitons	Chitonidae	Mollusks
56623	Cook'S Scallop	Chlamys cooki	Mollusks
56621	Squamose Scallop	Chlamys squamosa	Mollusks
56500	Bivalves	Class Bivalvia	Mollusks
55027	Pyramid Clio	Clio cuspidata	Mollusks

55026	Irregular Urchins	Clio pyramidata	Mollusks
50652	Morus Certh	Clypeomorus concisus	Mollusks
56706	Punctate Lucina	Codakia punctata	Mollusks
50847	Maculated Dwarf Triton	Columbraria muricata	Mollusks
50845	Shiny Dwarf Triton	Columbraria nitidula	Mollusks
50846	Twisted Dwarf Triton	Columbraria tortuosa	Mollusks
50920	Cone Shells	Conidae	Mollusks
50952	Sand-Dusted Cone	Conus arenatus	Mollusks
50963	Princely Cone	Conus aulicus	Mollusks
50968	Aureus Cone	Conus aureus	Mollusks
50969	Gold-Leaf Cone	Conus auricomus	Mollusks
50947	Banded Marble-Cone	Conus bandanus	Mollusks
50971	Bubble Cone	Conus bullatus	Mollusks
50942	Captain Cone	Conus capitaneus	Mollusks
50932	Cat Cone	Conus catus	Mollusks
50924	Chaldean Cone	Conus chaldeus	Mollusks
50972	Comma Cone	Conus connectens	Mollusks
50922	Crowned Cone	Conus coronatus	Mollusks
50970	Cylindrical Cone	Conus cylandraceus	Mollusks
50926	Distantly-Lined Cone	Conus distans	Mollusks
50923	Hebrew Cone	Conus ebraeus	Mollusks
50936	Ivory Cone	Conus eburneus	Mollusks
50965	Episcopus Cone	Conus episcopus	Mollusks
50927	Pacific Yellow Cone	Conus flavidus	Mollusks
50928	Frigid Cone	Conus frigidus	Mollusks
50945	General Cone	Conus generalis	Mollusks
50961	Geography Cone	Conus geographus	Mollusks
50955	Acorn Cone	Conus glans	Mollusks
50946	Imperial Cone	Conus imperialis	Mollusks
50964	Ambassador Cone	Conus legatus	Mollusks
50938	Leopard Cone	Conus leopardus	Mollusks
50951	Lithography Cone	Conus lithoglyphus	Mollusks
50937	Lettered Cone	Conus litteratus	Mollusks
50929	Livid Cone	Conus lividus	Mollusks
50958	Luteus Cone	Conus luteus	Mollusks
50966	Dignified Cone	Conus magnificus	Mollusks
50930	Soldier Cone	Conus miles	Mollusks
50939	1000-Spot Cone	Conus miliaris	Mollusks
50935	Morelet'S Cone	Conus moreleti	Mollusks

50940Music ConeConus musicusMollusks50943Weasel ConeConus obscurusMollusks50954Obscure ConeConus policariusMollusks50959Pertusus ConeConus pulicariusMollusks50921Flea-Bite ConeConus pulicariusMollusks50931Rat ConeConus reitferMollusks50967Netted ConeConus scanguinolentusMollusks50957Leaden ConeConus sanguinolentusMollusks50958Leaden ConeConus striatellusMollusks50959Striatellus ConeConus striatusMollusks50950Striatellus ConeConus terebraMollusks50954Terebra ConeConus terebraMollusks50955Terebra ConeConus terebraMollusks50956Terebra ConeConus testaltusMollusks50957Textile ConeConus testaltusMollusks50958Terebra ConeConus testaltusMollusks50959Textile ConeConus testaltusMollusks50950Treiba ConeConus testaltusMollusks50951Textile ConeConus testaltusMollusks50952Tuip ConeConus variusMollusks50961Tuip ConeConus variusMollusks50962Tuip ConeConus variusMollusks50953Eroded Coral ShellCoraliophila erosaMollusks50830Coral ShellCoraliophilidaeMollusks	50934	Muricate Cone	Conus muriculatus	Mollusks
50954Obscure ConeConus obscurusMollusks50959Pertusus ConeConus pertususMollusks50921Flea-Bite ConeConus rattusMollusks50931Rat ConeConus rattusMollusks50967Netted ConeConus retiferMollusks50933Blood-Stained ConeConus sanguinolentusMollusks50957Leaden ConeConus scabriusculusMollusks50957Leaden ConeConus striatellusMollusks50950Striatellus ConeConus striatellusMollusks50956Terebra ConeConus striatusMollusks50956Terebra ConeConus terselatusMollusks50956Terebra ConeConus texstileMollusks50957Leaden ConeConus textileMollusks50958Terebra ConeConus texstileMollusks50959Striatel ConeConus textileMollusks50950Tretoira ConeConus textileMollusks50951Terebra ConeConus textileMollusks50952Tulip ConeConus textileMollusks50960Varius ConeConus variusMollusks50941Flag ConeCoralisphila erosaMollusks50832Eroded Coral ShellCoralliophila erosaMollusks50831Violet Coral ShellCoraliophila erosaMollusks50831Bionic Rock ShellCronia biconicaMollusks50662Giant OysterCrassostrea mordax<	50940	Music Cone	Conus musicus	Mollusks
50959Pertusus ConeConus pertususMollusks50921Flea-Bite ConeConus pulicariusMollusks50931Rat ConeConus ratitusMollusks50967Netted ConeConus ratitusMollusks50933Blood-Stained ConeConus sanguinolentusMollusks50957Leaden ConeConus scabriusculusMollusks50957Leaden ConeConus sponsalisMollusks50950Striatellus ConeConus striatellusMollusks50950Striatel ConeConus striatusMollusks50954Terebra ConeConus striatusMollusks50955Terebra ConeConus terebraMollusks50956Terebra ConeConus testellaMollusks50957Textile ConeConus textileMollusks50958Terebra ConeConus textileMollusks50959Terebra ConeConus textileMollusks50950Tulip ConeConus tariusMollusks50961Tulip ConeConus variusMollusks50962Tulip ConeConus vitulinusMollusks50964Falg ConeCoralis vitulinusMollusks50831Fioded Coral ShellCoralliophila erosaMollusks50832Eroded Coral ShellCoralliophilidaeMollusks50830Coral ShellsCoralliophilidaeMollusks50662Giant OysterCrassostrea gigasMollusks50703TirtonsCymatium clandestiniumMoll	50943	Weasel Cone	Conus mustelinus	Mollusks
50921Flea-Bite ConeConus pulicariusMollusks50931Rat ConeConus rattusMollusks50967Netted ConeConus retiferMollusks50933Blood-Stained ConeConus scapuinolentusMollusks50957Leaden ConeConus saguinolentusMollusks50957Leaden ConeConus scapriusculusMollusks50958Striatellus ConeConus sponsalisMollusks50950Striatellos ConeConus striatellusMollusks50954Terebra ConeConus terebraMollusks50955Terebra ConeConus terebraMollusks50956Terebra ConeConus tesselatusMollusks50957Textile ConeConus textileMollusks50958Textile ConeConus tulipaMollusks50960Varius ConeConus tulipaMollusks50961Flag ConeConus variusMollusks50962Tulip ConeConus variusMollusks50963Eroded Coral ShellCoralliophila rerosaMollusks50830Coral ShellCoralliophila neritodideaMollusks50831Violet Coral ShellCoraliophila neritodideaMollusks50661Mangrove OysterCrassostrea gigasMollusks50770TritonsCymatium clandestiniumMollusks50784Clandestine TritonCymatium clandestiniumMollusks50773Jeweled TritonCymatium melaneumMollusks50774Liver	50954	Obscure Cone	Conus obscurus	Mollusks
50931Rat ConeConus ratusMollusks50967Netted ConeConus retiferMollusks50933Blood-Stained ConeConus sanguinolentusMollusks50957Leaden ConeConus scabriusculusMollusks50957Leaden ConeConus scabriusculusMollusks50950Striatellus ConeConus striatellusMollusks50950Striatellus ConeConus striatusMollusks50954Terebra ConeConus terebraMollusks50955Terebra ConeConus tesselatusMollusks50956Terebra ConeConus testileMollusks50957Textile ConeConus testileMollusks50958Textile ConeConus variusMollusks50960Varius ConeConus variusMollusks50941Flag ConeConus variusMollusks50953Textile ConeConus variusMollusks50960Varius ConeConus variusMollusks50941Flag ConeConus variusMollusks50832Eroded Coral ShellCoralliophila erosaMollusks50830Coral ShellCoralliophila neritodideaMollusks50831Violet Coral ShellCronia biconicaMollusks50622Giant OysterCrassostrea gigasMollusks50543Bionic Rock ShellCronia columellaMollusks50544Speciosus ScallopCryptopecten speciosumMollusks50750Cigar PieropodCrywierin	50959	Pertusus Cone	Conus pertusus	Mollusks
50931Rat ConeConus rattusMollusks50967Netted ConeConus senguinolentusMollusks50933Blood-Stained ConeConus sanguinolentusMollusks50937Leaden ConeConus scabriusculusMollusks50925Marriage ConeConus spinsalisMollusks50950Striatellus ConeConus striatellusMollusks50948Striatel ConeConus striatusMollusks50956Terebra ConeConus terebraMollusks50957Textile ConeConus tesselatusMollusks50958Textile ConeConus textileMollusks50962Tulip ConeConus variusMollusks50963Textile ConeConus variusMollusks50964Flag ConeConus variusMollusks50965Terded Coral ShellCoralis variusMollusks50960Varius ConeConus variusMollusks50941Flag ConeConus variusMollusks50942Erded Coral ShellCoralliophila erosaMollusks50831Violet Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoraliophila neritodideaMollusks50841Bionic Rock ShellCronis biconicaMollusks50505Cigar PteropodCuvierina columellaMollusks50700TritonsCymatium genmatumMollusks50770TritonsCymatium clandestiniumMollusks50774Liwer Triton	50921	Flea-Bite Cone		Mollusks
50933Blood-Stained ConeConus sanguinolentusMollusks50957Leaden ConeConus scabriusculusMollusks50925Marriage ConeConus sponsalisMollusks50950Striatellus ConeConus striatellusMollusks50948Striated ConeConus striatusMollusks50956Terebra ConeConus terebraMollusks50957Textile ConeConus terebraMollusks50956Terebra ConeConus terebraMollusks50957Textile ConeConus textileMollusks50958Textile ConeConus textileMollusks50960Varius ConeConus variusMollusks50961Flag ConeConus variusMollusks50941Flag ConeConus vitulinusMollusks50942Eroded Coral ShellCoralliophila erosaMollusks50832Eroded Coral ShellCoralliophila erosaMollusks50830Coral ShellsCoralliophildaeMollusks50841Bionic Rock ShellCronsitera gigasMollusks50852Cigar PteropodCuvierina columnellaMollusks50861Mangrove OysterCrassostrea mordaxMollusks50753Jeweled TritonCymatium clandestiniumMollusks50764Clandestine TritonCymatium clandestiniumMollusks50776Liver TritonCymatium labiosumMollusks50776Liver TritonCymatium lotoriumMollusks50778 <t< td=""><td>50931</td><td>Rat Cone</td><td>Conus rattus</td><td>Mollusks</td></t<>	50931	Rat Cone	Conus rattus	Mollusks
50957Leaden ConeConus scabriusculusMollusks50925Marriage ConeConus sponsalisMollusks50926Striatellus ConeConus striatellusMollusks50948Striated ConeConus striatusMollusks50956Terebra ConeConus terebraMollusks50957Textile ConeConus terebraMollusks50958Textile ConeConus tesselatusMollusks50959Textile ConeConus textileMollusks50960Varius ConeConus variusMollusks50961Flag ConeConus variusMollusks50964Flag ConeConus variusMollusks50949Calf ConeConus variusMollusks50949Calf ConeCoralliophila erosaMollusks50831Violet Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoralliophilidaeMollusks50841Bionic Rock ShellCronia biconicaMollusks50852Cigar PteropodCuvierina columnellaMollusks50813Bionic Rock ShellCronia biconicaMollusks50770TritonsCymatium clandestiniumMollusks50773Jeweled TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium lotoriumMollusks50779Common Hairy TritonCymatium nicobaricumMollusks50771Aquatile Ha	50967	Netted Cone	Conus retifer	Mollusks
50925Marriage ConeConus sponsalisMollusks50950Striatellus ConeConus striatellusMollusks50948Striated ConeConus striatusMollusks50956Terebra ConeConus terebraMollusks50957Terebra ConeConus terselatusMollusks50958Textile ConeConus textileMollusks50953Textile ConeConus textileMollusks50962Tulip ConeConus variusMollusks50960Varius ConeConus variusMollusks50941Flag ConeConus vexillumMollusks50832Eroded Coral ShellCoralliophila erosaMollusks50830Coral ShellCoralliophila neritodideaMollusks50830Coral ShellCoralsostrea gigasMollusks50662Giant OysterCrassostrea gigasMollusks50813Bionic Rock ShellCronia biconicaMollusks50700TritonsCymatima clandestiniumMollusks50770TritonsCymatium clandestiniumMollusks50776Liver TritonCymatium lepaticumMollusks50774Short-Neck TritonCymatium labiosumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium nicobaricumMollusks	50933	Blood-Stained Cone	Conus sanguinolentus	Mollusks
50950Striatellus ConeConus striatellusMollusks50948Striated ConeConus striatusMollusks50956Terebra ConeConus terebraMollusks50954Checkered ConeConus tesselatusMollusks50953Textile ConeConus tesselatusMollusks50960Yarius ConeConus variusMollusks50960Varius ConeConus variusMollusks50960Varius ConeConus variusMollusks50960Varius ConeConus variusMollusks50941Flag ConeConus vitulinusMollusks50942Calf ConeConus vitulinusMollusks50943Eroded Coral ShellCoralliophila erosaMollusks50831Violet Coral ShellCoralliophila erosaMollusks50830Coral ShellsCoralliophilidaeMollusks50662Giant OysterCrassostrea gigasMollusks506631Mangrove OysterCryptopecten speciosumMollusks50644Speciosus ScallopCryptopecten speciosumMollusks50770TritonsCymatium clandestiniumMollusks50774Jeweled TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium pileareMollusks	50957	Leaden Cone	Conus scabriusculus	Mollusks
50950Striatellus ConeConus striatellusMollusks50948Striated ConeConus striatusMollusks50956Terebra ConeConus terebraMollusks50957Textile ConeConus tesselatusMollusks50953Textile ConeConus tesselatusMollusks50962Tulip ConeConus tulipaMollusks50960Varius ConeConus variusMollusks50941Flag ConeConus variusMollusks50942Eroded Coral ShellCoralliophila erosaMollusks50943Eroded Coral ShellCoralliophila neritodideaMollusks50831Violet Coral ShellCoralliophilidaeMollusks50830Coral ShellsCoralliophilidaeMollusks50662Giant OysterCrassostrea gigasMollusks50813Bionic Rock ShellCronia biconicaMollusks5055Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatium clandestiniumMollusks50774Liver TritonCymatium lepaticumMollusks50774Short-Neck TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium nicobaricumMollusks50774Short-Neck TritonCymatium nicobaricumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium nicobaricu	50925	Marriage Cone	Conus sponsalis	Mollusks
50956Terebra ConeConus terebraMollusks50944Checkered ConeConus tesselatusMollusks50953Textile ConeConus textileMollusks50962Tulip ConeConus tulipaMollusks50960Varius ConeConus variusMollusks50941Flag ConeConus vexillumMollusks50942Eroded Coral ShellCoralliophila erosaMollusks50832Eroded Coral ShellCoralliophila neritodideaMollusks50831Violet Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoralliophila neritodideaMollusks50662Giant OysterCrassostrea gigasMollusks50813Bionic Rock ShellCronia biconicaMollusks50704TritonsCymatidaeMollusks50770TritonsCymatidaeMollusks50774Jeweled TritonCymatium clandestiniumMollusks50774Short-Neck TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium nuricinumMollusks50774Short-Neck TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pileareMollusks	50950	Striatellus Cone		Mollusks
50944Checkered ConeConus tesselatusMollusks50953Textile ConeConus textileMollusks50962Tulip ConeConus tulipaMollusks50960Varius ConeConus variusMollusks50941Flag ConeConus variusMollusks50942Calf ConeConus verillumMollusks50943Calf ConeConus vitulinusMollusks50832Eroded Coral ShellCoralliophila erosaMollusks50830Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoralliophilidaeMollusks50662Giant OysterCrassostrea gigasMollusks50813Bionic Rock ShellCronia biconicaMollusks50525Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatium clandestiniumMollusks50773Jeweled TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium labiosumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium nicobaricumMollusks50771Aquatile Hairy TritonCymatium pileareMollusks	50948	Striated Cone	Conus striatus	Mollusks
50953Textile ConeConus textileMollusks50962Tulip ConeConus tulipaMollusks50960Varius ConeConus variusMollusks50941Flag ConeConus vexillumMollusks50949Calf ConeConus vexillumMollusks50832Eroded Coral ShellCoralliophila erosaMollusks50831Violet Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoralliophila neritodideaMollusks50662Giant OysterCrassostrea gigasMollusks50613Bionic Rock ShellCronia biconicaMollusks50525Cigar PteropodCuvierina columnellaMollusks50704TritonsCymatium gemmatumMollusks50775Liver TritonCymatium hepaticumMollusks50784Black-Spotted TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium lotoriumMollusks50775Nicobar Hairy TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium nicobaricumMollusks50774Aquatile Hairy TritonCymatium nicobaricumMollusks50775Common Hairy TritonCymatium nicobaricumMollusks	50956	Terebra Cone	Conus terebra	Mollusks
50962Tulip ConeConus tulipaMollusks50960Varius ConeConus variusMollusks50941Flag ConeConus vexillumMollusks50949Calf ConeConus vitulinusMollusks50832Eroded Coral ShellCoralliophila erosaMollusks50831Violet Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoralliophilidaeMollusks56662Giant OysterCrassostrea gigasMollusks56661Mangrove OysterCrassostrea mordaxMollusks50813Bionic Rock ShellCronia biconicaMollusks50705Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatiudaeMollusks50774Jeweled TritonCymatium genmatumMollusks50782Black-Spotted TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium labiosumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50944	Checkered Cone	Conus tesselatus	Mollusks
50960Varius ConeConus variusMollusks50941Flag ConeConus vexillumMollusks50949Calf ConeConus vitulinusMollusks50832Eroded Coral ShellCoralliophila erosaMollusks50831Violet Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoralliophila neritodideaMollusks56662Giant OysterCrassostrea gigasMollusks56661Mangrove OysterCrassostrea mordaxMollusks50813Bionic Rock ShellCronia biconicaMollusks56624Speciosus ScallopCryptopecten speciosumMollusks50770TritonsCymatium clandestiniumMollusks50774Liver TritonCymatium gemmatumMollusks50782Black-Spotted TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium lotoriumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50953	Textile Cone	Conus textile	Mollusks
50941Flag ConeConus vexillumMollusks50949Calf ConeConus vitulinusMollusks50832Eroded Coral ShellCoralliophila erosaMollusks50831Violet Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoralliophila neritodideaMollusks50662Giant OysterCrassostrea gigasMollusks56661Mangrove OysterCrassostrea mordaxMollusks50813Bionic Rock ShellCronia biconicaMollusks56624Speciosus ScallopCryptopecten speciosumMollusks50705Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatium clandestiniumMollusks50776Liver TritonCymatium labiosumMollusks50782Black-Spotted TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium nicobaricumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50962	Tulip Cone	Conus tulipa	Mollusks
50949Calf ConeConus vitulinusMollusks50832Eroded Coral ShellCoralliophila erosaMollusks50831Violet Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoralliophilidaeMollusks50662Giant OysterCrassostrea gigasMollusks56661Mangrove OysterCrassostrea mordaxMollusks50813Bionic Rock ShellCronia biconicaMollusks56624Speciosus ScallopCryptopecten speciosumMollusks50705Cigar PteropodCuvierina columnellaMollusks50710TritonsCymatium clandestiniumMollusks50776Liver TritonCymatium hepaticumMollusks50782Black-Spotted TritonCymatium labiosumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50771Aquatile Hairy TritonCymatium pileareMollusks	50960	Varius Cone	Conus varius	Mollusks
50832Eroded Coral ShellCoralliophila erosaMollusks50831Violet Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoralliophila neritodideaMollusks5662Giant OysterCrassostrea gigasMollusks56661Mangrove OysterCrassostrea mordaxMollusks50813Bionic Rock ShellCronia biconicaMollusks56624Speciosus ScallopCryptopecten speciosumMollusks50705Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatium clandestiniumMollusks50773Jeweled TritonCymatium gemmatumMollusks50786Wide-Lipped TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium nuricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks	50941	Flag Cone	Conus vexillum	Mollusks
50831Violet Coral ShellCoralliophila neritodideaMollusks50830Coral ShellsCoralliophilidaeMollusks56662Giant OysterCrassostrea gigasMollusks56661Mangrove OysterCrassostrea mordaxMollusks50813Bionic Rock ShellCronia biconicaMollusks56624Speciosus ScallopCryptopecten speciosumMollusks5025Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatiidaeMollusks50773Jeweled TritonCymatium clandestiniumMollusks50776Liver TritonCymatium hepaticumMollusks50782Black-Spotted TritonCymatium labiosumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pileareMollusks	50949	Calf Cone	Conus vitulinus	Mollusks
50830Coral ShellsCoralliophilidaeMollusks56662Giant OysterCrassostrea gigasMollusks56661Mangrove OysterCrassostrea mordaxMollusks50813Bionic Rock ShellCronia biconicaMollusks56624Speciosus ScallopCryptopecten speciosumMollusks55025Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatiidaeMollusks50774Liver TritonCymatium clandestiniumMollusks50776Liver TritonCymatium hepaticumMollusks50782Black-Spotted TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50832	Eroded Coral Shell	Coralliophila erosa	Mollusks
56662Giant OysterCrassostrea gigasMollusks56661Mangrove OysterCrassostrea mordaxMollusks50813Bionic Rock ShellCronia biconicaMollusks56624Speciosus ScallopCryptopecten speciosumMollusks55025Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatiidaeMollusks50773Jeweled TritonCymatium clandestiniumMollusks50776Liver TritonCymatium hepaticumMollusks50782Black-Spotted TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium nuricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pilere aquatileMollusks	50831	Violet Coral Shell	Coralliophila neritodidea	Mollusks
56661Mangrove OysterCrassostrea mordaxMollusks50813Bionic Rock ShellCronia biconicaMollusks56624Speciosus ScallopCryptopecten speciosumMollusks55025Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatiidaeMollusks50774Clandestine TritonCymatium clandestiniumMollusks50775Jeweled TritonCymatium gemmatumMollusks50776Liver TritonCymatium labiosumMollusks50782Black-Spotted TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium nicobaricumMollusks50772Nicobar Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50830	Coral Shells	Coralliophilidae	Mollusks
50813Bionic Rock ShellCronia biconicaMollusks56624Speciosus ScallopCryptopecten speciosumMollusks55025Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatiidaeMollusks50784Clandestine TritonCymatium clandestiniumMollusks50773Jeweled TritonCymatium gemmatumMollusks50776Liver TritonCymatium labiosumMollusks50786Wide-Lipped TritonCymatium labiosumMollusks50774Short-Neck TritonCymatium nuricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	56662	Giant Oyster	Crassostrea gigas	Mollusks
56624Speciosus ScallopCryptopecten speciosumMollusks55025Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatiidaeMollusks50784Clandestine TritonCymatium clandestiniumMollusks50773Jeweled TritonCymatium gemmatumMollusks50776Liver TritonCymatium hepaticumMollusks50786Wide-Lipped TritonCymatium labiosumMollusks50782Black-Spotted TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium nuricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50771Aquatile Hairy TritonCymatium pileareMollusks	56661	Mangrove Oyster	Crassostrea mordax	Mollusks
55025Cigar PteropodCuvierina columnellaMollusks50770TritonsCymatiidaeMollusks50784Clandestine TritonCymatium clandestiniumMollusks50773Jeweled TritonCymatium gemmatumMollusks50776Liver TritonCymatium hepaticumMollusks50786Wide-Lipped TritonCymatium labiosumMollusks50782Black-Spotted TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium nuricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks	50813	Bionic Rock Shell	Cronia biconica	Mollusks
50770TritonsCymatiidaeMollusks50784Clandestine TritonCymatium clandestiniumMollusks50773Jeweled TritonCymatium gemmatumMollusks50776Liver TritonCymatium hepaticumMollusks50786Wide-Lipped TritonCymatium labiosumMollusks50782Black-Spotted TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium nuricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	56624	Speciosus Scallop	Cryptopecten speciosum	Mollusks
50784Clandestine TritonCymatium clandestiniumMollusks50773Jeweled TritonCymatium gemmatumMollusks50776Liver TritonCymatium hepaticumMollusks50786Wide-Lipped TritonCymatium labiosumMollusks50782Black-Spotted TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium nicobaricumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	55025	Cigar Pteropod	Cuvierina columnella	Mollusks
50773Jeweled TritonCymatium gemmatumMollusks50776Liver TritonCymatium hepaticumMollusks50786Wide-Lipped TritonCymatium labiosumMollusks50782Black-Spotted TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium muricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50770	Tritons	Cymatiidae	Mollusks
50776Liver TritonCymatium hepaticumMollusks50786Wide-Lipped TritonCymatium labiosumMollusks50782Black-Spotted TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium muricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50784	Clandestine Triton	Cymatium clandestinium	Mollusks
50786Wide-Lipped TritonCymatium labiosumMollusks50782Black-Spotted TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium muricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50773	Jeweled Triton	Cymatium gemmatum	Mollusks
50782Black-Spotted TritonCymatium lotoriumMollusks50774Short-Neck TritonCymatium muricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50776	Liver Triton	Cymatium hepaticum	Mollusks
50774Short-Neck TritonCymatium muricinumMollusks50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50786	Wide-Lipped Triton	Cymatium labiosum	Mollusks
50772Nicobar Hairy TritonCymatium nicobaricumMollusks50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50782	Black-Spotted Triton	Cymatium lotorium	Mollusks
50779Common Hairy TritonCymatium pileareMollusks50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50774	Short-Neck Triton	Cymatium muricinum	Mollusks
50771Aquatile Hairy TritonCymatium pilere aquatileMollusks	50772	Nicobar Hairy Triton	Cymatium nicobaricum	Mollusks
	50779	Common Hairy Triton	Cymatium pileare	Mollusks
50783Pear TritonCymatium pyrumMollusks	50771	Aquatile Hairy Triton	Cymatium pilere aquatile	Mollusks
	50783	Pear Triton	Cymatium pyrum	Mollusks

50775	Red Triton	Cymatium rubeculum	Mollusks
50785	Dwarf Hairy Triton	Cymatium vespaceum	Mollusks
50703	Gold-Ringer Cowry	Cypraea annulus	Mollusks
50726	Arabian Cowry	Cypraea arabica	Mollusks
50734	Eyed Cowry	Cypraea argus	Mollusks
50739	Golden Cowry	Cypraea aurantium	Mollusks
50738	Beck'S Cowry	Cypraea beckii	Mollusks
50733	Bistro Cowry	Cypraea bistronatata	Mollusks
50702	Snake'S Head Cowry	Cypraea caputserpentis	Mollusks
50710	Carnelian Cowry	Cypraea carneola	Mollusks
50740	Chinese Cowry	Cypraea chinensis	Mollusks
50732	Chick-Pea Cowry	Cypraea cicercula	Mollusks
50721	Clandestine Cowry	Cypraea clandestina	Mollusks
50715	Sieve Cowry	Cypraea cribaria	Mollusks
50713	Sowerby'S Cowry	Cypraea cylindrica	Mollusks
50717	Depressed Cowry	Cypraea depressa	Mollusks
50743	Dillwyn'S Cowry	Cypraea dillywini	Mollusks
50706	Eglantine Cowry	Cypraea eglantina	Mollusks
50708	Eroded Cowry	Cypraea erosa	Mollusks
50736	Globular Cowry	Cypraea globulus	Mollusks
50711	Honey Cowry	Cypraea helvola	Mollusks
50730	Swallow Cowry	Cypraea hirundo	Mollusks
50742	Humphrey'S Cowry	Cypraea humphreysi	Mollusks
50707	Isabelle Cowry	Cypraea isabella	Mollusks
50731	Lined-Lip Cowry	Cypraea labrolineata	Mollusks
50741	Limacina Cowry	Cypraea limicina	Mollusks
50704	Lynx Cowry	Cypraea lynx	Mollusks
50716	Reticulated Cowry	Cypraea maculifera	Mollusks
50705	Map Cowry	Cypraea mappa	Mollusks
50737	Marie'S Cowry	Cypraea mariae	Mollusks
50725	Humpback Cowry	Cypraea mauritiana	Mollusks
50723	Microdon Cowry	Cypraea microdon	Mollusks
50701	Money Cowry	Cypraea moneta	Mollusks
50722	Nuclear Cowry	Cypraea nucleus	Mollusks
50709	Porus Cowry	Cypraea poraria	Mollusks
50714	Punctata Cowry	Cypraea punctata	Mollusks
50729	Jester Cowry	Cypraea scurra	Mollusks
50712	Grape Cowry	Cypraea staphlea	Mollusks
50724	Stolid Cowry	Cypraea stolida	Mollusks

50720	Mole Cowry	Cypraea talpa	Mollusks
50728	Teres Cowry	Cypraea teres	Mollusks
50718	Tiger Cowry	Cypraea tigris	Mollusks
50727	Ventral Cowry	Cypraea ventriculus	Mollusks
50719	Pacific Deer Cowry	Cypraea vitellus	Mollusks
50735	Undulating Cowry	Cypraea ziczac	Mollusks
50700	Cowrys	Cypraeidae	Mollusks
55024	3-Spined Cavoline	Diacria trispinosa	Mollusks
50778	Anal Triton	Distorso anus	Mollusks
55100	Dorid Nudibranchs	Doridae	Mollusks
50823	Clatherate Drupe	Drupa clathrata	Mollusks
50821	Elegant Pacific Drupe	Drupa elegans	Mollusks
50820	Digitate Pacific Drupe	Drupa grossularia	Mollusks
50819	Purple Pacific Drupe	Drupa morum	Mollusks
50818	Prickley Pacific Drupe	Drupa ricinus	Mollusks
50822	Strawberry Drupe	Drupa rubusidacaeus	Mollusks
56622	Spectacular Scallop	Excellichlamys spectiablis	Mollusks
50850	Spindles	Fasciolariidae	Mollusks
56722	Pac Strawberry Cockle	Fragum fragum	Mollusks
56908	Tumid Venus	Gafrarium tumidum	Mollusks
50777	Rosy Gyre Triton	Gyrineum roseum	Mollusks
50780	Purple Gyre Triton	Gyrinium pusillum	Mollusks
50911	Little Love Harp	Harpa amouretta	Mollusks
50913	True Harp	Harpa harpa	Mollusks
50912	Major Harp	Harpa major	Mollusks
50910	Harp Shells	Harpidae	Mollusks
50989	Lance Auger	Hastula lanceata	Mollusks
50988	Pencil Auger	Hastula penicillata	Mollusks
55101	Spanish Dancer	Hexabranchus sanguineus	Mollusks
56881	Giant Clam	Hippopus hippopus	Mollusks
50806	Anatomical Murex	Homalocanthia anatomica	Mollusks
54423	Gr-Lined Paber Bubble	Hydratina physis	Mollusks
50875	Cone-Like Miter	Imbricaria conularis	Mollusks
50873	Olive-Shaped Miter	Imbricaria olivaeformis	Mollusks
50874	Bonelike Miter	Imbricaria punctata	Mollusks
56611	Saddle Tree Oyster	Isognomon ephippium	Mollusks
56610	Tree Oysters	Isognomonidae	Mollusks
54351	Janthina Snail	Janthina janthina	Mollusks
54350	Pelagic Snails	Janthinidae	Mollusks

50682	Chiragra Spider Conch	Lambis chiragra	Mollusks
50685	Ormouth Spider Conch	Lambis crocota	Mollusks
50681	Common Spider Conch	Lambis lambis	Mollusks
50684	Scorpio Conch	Lambis scorpius scorpius	Mollusks
50680	Spider Conch	Lambis sp.	Mollusks
50683	Giant Spider Conch	Lambis truncata	Mollusks
50851	Nobby Spindle	Latirus nodatus	Mollusks
50852	Spindle	Latirus rudis	Mollusks
56681	Fragile Lima	Lima fragilis	Mollusks
56682	Indo-Pac Spiny Lima	Lima vulgaris	Mollusks
56680	Limas	Limidae	Mollusks
56904	Camp Pitar Venus	Lioconcha castrensis	Mollusks
56906	Hieroglyphic Venus	Lioconcha hieroglyphica	Mollusks
56905	Ornate Pitar Venus	Lioconcha ornata	Mollusks
50642	Scabra Periwinkle	Littorina scabra	Mollusks
50641	Undulate Periwinkle	Littorina undulata	Mollusks
50640	Periwinkles	Littorinidae	Mollusks
56705	Lucinas	Lucinidae	Mollusks
50762	Apple Tun	Malea pomum	Mollusks
50811	Pinnacle Murex	Marchia bipinnatus	Mollusks
50809	Fenestrate Murex	Marchia martinetana	Mollusks
54430	Melampus Shells	Melampidae	Mollusks
54431	Yellow Melampus	Melampus luteus	Mollusks
57401	Flamboyant Cuttlefish	Metasepia pfefferi	Mollusks
54425	Mini Lined-Bubble	Micromelo undatus	Mollusks
54411	Ventricose Milda	Milda ventricosa	Mollusks
56626	Miraculous Scallop	Mirapecten mirificus	Mollusks
50897	Imperial Miter	Miter imperalis	Mollusks
50899	Acuminate Miter	Mitra acuminata	Mollusks
50890	Cardinal Miter	Mitra cardinalis	Mollusks
50893	Chrysalis Miter	Mitra chrysalis	Mollusks
50895	Gold-Mth Miter	Mitra chrysostoma	Mollusks
50889	Coffee Miter	Mitra coffea	Mollusks
50898	Contracted Miter	Mitra contracta	Mollusks
50892	Kettle Miter	Mitra cucumaria	Mollusks
50876	Rusty Miter	Mitra ferruginea	Mollusks
50891	Strawberry Miter	Mitra fraga	Mollusks
50888	Tesselate Miter	Mitra incompta	Mollusks
50872	Episcopal Miter	Mitra mitra	Mollusks

50883	Papal Miter	Mitra papalis	Mollusks
50894	Red-Painted Miter	Mitra rubitincta	Mollusks
50871	Pontifical Miter	Mitra stictica	Mollusks
50870	Miter Shells	Mitridae	Mollusks
50000	Mollusca	Mollusca	Mollusks
50801	Burnt Murex	Murex burneus	Mollusks
50800	Murex Shells	Muricidae	Mollusks
56505	Mussels	Mytilidae	Mollusks
50804	Tragonula Murex	Naquetia trigonulus	Mollusks
50803	Triquetra Murex	Naquetia triquetra	Mollusks
50817	Francolina Jopas	Nassa francolina	Mollusks
50855	Nassa Mud Snails	Nassariidae	Mollusks
50858	Granulated Nassa	Nassarius graniferus	Mollusks
50857	Margarite Nassa	Nassarius margaritiferus	Mollusks
50856	Pimpled Basket	Nassarius papillosus	Mollusks
50755	Moon Shells	Naticidae	Mollusks
57300	Nautilus	Nautilidae	Mollusks
57301	Chambered Nautilus	Nautilus ponpilius	Mollusks
50884	Clathrus Miter	Neocancilla clathrus	Mollusks
50896	Flecked Miter	Neocancilla granitina	Mollusks
50901	Butterfly Miter	Neocancilla papilio	Mollusks
50633	Ox-Palate Nerite	Nerita albicilla	Mollusks
50631	Plicate Nerite	Nerita plicata	Mollusks
50632	Polished Nerite	Nerita polita	Mollusks
50634	Reticulate Nerite	Nerita signata	Mollusks
50630	Nerites	Neritidae	Mollusks
50600	Diotocardia	O Archaeogastropoda	Mollusks
57700	Octopus	Octopodidae	Mollusks
57735	Common Octopus	Octopus cyanea	Mollusks
57734	Red Octopus	Octopus luteus	Mollusks
57736	Ornate Octopus	Octopus ornatus	Mollusks
57730	Octopus	Octopus sp.	Mollusks
57732	Pelagic Octopus	Octopus sp.	Mollusks
57733	Long-Armed Octopus	Octopus sp.	Mollusks
57731	Elongate Octopus	Octopus teuthoides	Mollusks
50861	Amethyst Olive	Oliva annulata	Mollusks
50863	Carnelian Olive	Oliva carneola	Mollusks
50862	Red-Mth Olive	Oliva miniacea	Mollusks
50864	Peg Olive	Oliva paxillus	Mollusks

50860	Olive Shells	Olividae	Mollusks
57500	Squids	Order Teuthoidea	Mollusks
56660	True Oysters	Ostreidae	Mollusks
54412	Cat'S Ear Otopleura	Otopleura auriscati	Mollusks
50753	Common Egg Cowry	Ovula ovum	Mollusks
50750	Egg Shells	Ovulidae	Mollusks
56620	Scallops	Pectinidae	Mollusks
56902	Crispate Venus	Periglypta crispata	Mollusks
56903	Youthful Venus	Periglypta puerpera	Mollusks
56901	Reticulate Venus	Periglypta reticulata	Mollusks
56601	Pearl Oyster	Pinctada margaritfera	Mollusks
56531	Bicolor Pen Shell	Pinna bicolor	Mollusks
56530	Pen Shells	Pinnidae	Mollusks
50756	Breast-Shaped Moon	Polinices mamatus	Mollusks
50757	Pear-Shaped Moon	Polinices tumidus	Mollusks
50844	Strawberry Goblet	Pollia fragaria	Mollusks
50843	Beautiful Goblet	Pollia pulchra	Mollusks
50752	Fruit Ovula	Prionovula fruticum	Mollusks
56600	Pearl Oysters	Pteriidae	Mollusks
50904	Crenulate Miter	Pterygia crenulata	Mollusks
50907	Fenestrate Miter	Pterygia fenestrata	Mollusks
50905	Nut Miter	Pterygia nucea	Mollusks
50902	Rough Miter	Pterygia scabricula	Mollusks
50810	Club Murex	Pterynotus elongatus	Mollusks
50807	Fluted Murex	Pterynotus laqueatus	Mollusks
50808	3-Winged Murex	Pterynotus tripterus	Mollusks
54413	Solid Pupa	Pupa solidula	Mollusks
50816	Perssian Purpura	Purpura persica	Mollusks
54401	Sulcate Pyram	Pyramidella sulcata	Mollusks
54400	Pyram Shells	Pyramidellidae	Mollusks
50833	Quoy'S Coral Shell	Quoyula madreporarum	Mollusks
50834	Rapa Snail	Rapa rapa	Mollusks
50653	Rough Vertigus	Rhinoclavis aspera	Mollusks
50655	Obelisk Vertigus	Rhinoclavis sinensis	Mollusks
50900	Chaste Miter	Sabricola casta	Mollusks
56625	Tiger Scallop	Semipallium tigris	Mollusks
57403	Broadclub Cuttlefish	Sepia latimanus	Mollusks
57402	Cuttlefish	<i>Sepia</i> sp.	Mollusks
57594	Bigfin Reef Squid	Sepioteuthis lessoniana	Mollusks

56511	Box Mussel	Septifer bilocularis	Mollusks
50805	Lacy Murex	Siratus laciniatus	Mollusks
56670	Thorny Oysters	Spondylidae	Mollusks
56671	Ducal Thorny Oyster	Spondyulus squamosus	Mollusks
56532	Baggy Pen Shell	Streptopinna saccata	Mollusks
50660	True Conchs	Strombidae	Mollusks
50665	Samar Conch	Strombus dentatus	Mollusks
50666	Fragile Conch	Strombus fragilis	Mollusks
50663	Gibbose Conch	Strombus gibberulus	Mollusks
50669	Lavender-Mouth Conch	Strombus haemastoma	Mollusks
50667	Silver-Lip Conch	Strombus lentigninosus	Mollusks
50662	Red-Lip Conch	Strombus luhuanus	Mollusks
50664	Micro Conch	Strombus microurceus	Mollusks
50661	Mutable Conch	Strombus mutabilis	Mollusks
50672	Pretty Conch	Strombus plicatus	Mollusks
50670	Laciniate Conch	Strombus sinuatus	Mollusks
50671	Bull Conch	Strombus taurus	Mollusks
50612	Pyramid Top	Tectus pyramis	Mollusks
56894	Box-Like Tellin	Tellina capsoides	Mollusks
56892	Cat'S Tongue Tellin	Tellina linguafelis	Mollusks
56895	Remie'S Tellin	Tellina remies	Mollusks
56893	Rasp Tellin	Tellina scobinata	Mollusks
56890	Tellin Clams	Tellinidae	Mollusks
50668	Terebellum Conch	Terebellum terebellum	Mollusks
50985	Similar Auger	Terebra affinis	Mollusks
50997	Fly-Spotted Auger	Terebra areolata	Mollusks
50996	Eyed Auger	Terebra argus	Mollusks
50987	Babylonian Auger	Terebra babylonia	Mollusks
50990	Certhlike Auger	Terebra cerithiana	Mollusks
50995	Short Auger	Terebra chlorata	Mollusks
50984	Crenulated Auger	Terebra crenulata	Mollusks
50982	Dimidiate Auger	Terebra dimidiata	Mollusks
50994	Tiger Auger	Terebra felina	Mollusks
50991	Funnel Auger	Terebra funiculata	Mollusks
50993	Spotted Auger	Terebra gutatta	Mollusks
50981	Marlinspike Auger	Terebra maculata	Mollusks
50986	Cloud Auger	Terebra nubulosa	Mollusks
50983	Subulate Auger	Terebra subulata	Mollusks
50992	Undulate Auger	Terebra undulata	Mollusks

50980	Auger Shells	Terebridae	Mollusks
50815	Belligerent Rock Shell	Thais armigera	Mollusks
50814	Tuberose Rock Shell	Thais tuberosa	Mollusks
50761	Partridge Tun	Tonna perdix	Mollusks
50760	Tun Shells	Tonnidae	Mollusks
56723	Angulate Cockle	Trachycardium angulatum	Mollusks
56882	Giant Clam	Tridacna crocea	Mollusks
56883	Lagoon Giant Clam	Tridacna derasa	Mollusks
56884	Giant Clam	Tridacna gigas	Mollusks
56885	Common Giant Clam	Tridacna maxima	Mollusks
56886	Fluted Giant Clam	Tridacna squamosa	Mollusks
56880	Giant Clams	Tridacnidae	Mollusks
50610	Top Shells	Trochidae	Mollusks
50611	Top Shell	Trochus niloticus	Mollusks
50613	Radiate Top	Trochus radiatus	Mollusks
50865	Vases	Turbinellidae	Mollusks
50620	Turban Shell	Turbinidae	Mollusks
50622	Silver-Mouth Turbin	Turbo argyrostoma	Mollusks
50623	Tapestry Turbin	Turbo petholatus	Mollusks
50621	Rough Turbin	Turbo setosus	Mollusks
50867	Ceramic Vase	Vasum ceramicum	Mollusks
50866	Common Pacific Vase	Vasum turbinellus	Mollusks
56900	Venus Shells	Veneridae	Mollusks
50887	Bernhard'S Miter	Vexillum bernhardiana	Mollusks
50882	Cancellaria Miter	Vexillum cancellarioides	Mollusks
50880	Saffron Miter	Vexillum crocatum	Mollusks
50879	Roughened Miter	Vexillum exasperatum	Mollusks
50885	Patriarchal Miter	Vexillum patriarchalis	Mollusks
50881	Half-Banded Miter	Vexillum semifasciatum	Mollusks
50903	Specious Miter	Vexillum speciosum	Mollusks
50886	Bumpy Miter	Vexillum tuberosum	Mollusks
50906	Turbin Miter	Vexillum turbin	Mollusks
50877	Decorated Miter	Vexillum unifasciatum	Mollusks
50802	Spotted Vitularia	Vitularia miliaris	Mollusks
41316	Manahak (Forktail Rabbitfish)	Manahak lesso'	Siganidae
41318	Manahak	Manahak sp.	Siganidae
41300	Rabbitfish	Siganidae	Siganidae
41301	Fork-Tail Rabbitfish	Siganus argenteus	Siganidae
41307	Seagrass Rabbitfish	Siganus canaliculatus	Siganidae

41308	Coral Rabbitfish	Siganus corallinus	Siganidae
41302	Pencil-Streaked Rabbitfish	Siganus doliatus	Siganidae
41303	Fuscescens Rabbitfish	Siganus fuscescens	Siganidae
41309	Golden Rabbitfish	Siganus guttatus	Siganidae
41311	Lined Rabbitfish	Siganus lineatus	Siganidae
41313	White-Spotted Rabbitfish	Siganus oramin	Siganidae
41310	Masked Rabbitfish	Siganus puellus	Siganidae
41314	Peppered Rabbitfish	Siganus punctatissimus	Siganidae
41304	Gold-Spotted Rabbitfish	Siganus punctatus	Siganidae
41315	Randal'S Rabbitfish	Siganus randalli	Siganidae
41305	Scribbled Rabbitfish	Siganus spinus	Siganidae
41306	Vermiculated Rabbitfish	Siganus vermiculatus	Siganidae
41312	Rabbitfish	Siganus vulpinus	Siganidae
32301	Silvermouth/Jobfish	Aphareus furca	Lutjanidae
32300	Snappers	Lutjanidae	Lutjanidae
32306	River Snapper	Lutjanus argentimaculatus	Lutjanidae
32325	Two-Spot Snapper	Lutjanus biguttatus	Lutjanidae
32307	Red Snapper	Lutjanus bohar	Lutjanidae
32334	Snapper	Lutjanus boutton	Lutjanidae
32326	Checkered Snapper	Lutjanus decussatus	Lutjanidae
32327	Blackspot Snapper	Lutjanus ehrenbergi	Lutjanidae
32335	Snapper	Lutjanus fulviflamma	Lutjanidae
32308	Flametail Snapper	Lutjanus fulvus	Lutjanidae
32309	Humpback Snapper	Lutjanus gibbus	Lutjanidae
32328	Malabar Snapper	Lutjanus malabaricus	Lutjanidae
32312	Onespot Snapper	Lutjanus monostigma	Lutjanidae
32311	Scribbled Snapper	Lutjanus rivulatus	Lutjanidae
32333	Snapper	Lutjanus sebae	Lutjanidae
32329	1/2-Barred Snapper	Lutjanus semicinctus	Lutjanidae
32330	One-Lined Snapper	Lutjanus vitta	Lutjanidae
32332	Bl And Wh Snapper	Macolor macularis	Lutjanidae
32313	Black Snapper	Macolor niger	Lutjanidae
32314	Fusilier	Paracaesio sordidus	Lutjanidae
32315	Yellowtail Fusilier	Paracaesio xanthurus	Lutjanidae
32322	Deepwater Snapper	Randallichthys filamentosus	Lutjanidae
49130	Shallow Snappers	Shallow Snappers	Lutjanidae
32331	Sailfin Snapper	Symphorichthys spilurus	Lutjanidae
28901	Red-Flushed Grouper	Aethaloperca rogaa	Serranidae
28956	Grouper	Anyperodon	Serranidae
		leucogrammicus	

28908	Orange Grouper	Cephalopholis analis	Serranidae
28907	Peacock Grouper	Cephalopholis argus	Serranidae
28911	Brownbarred Grouper	Cephalopholis boenack	Serranidae
28909	Ybanded Grouper	Cephalopholis igarashiensis	Serranidae
28910	Leopard Grouper	Cephalopholis leopardus	Serranidae
28945	Coral Grouper	Cephalopholis miniata	Serranidae
28929	Harlequin Grouper	Cephalopholis polleni	Serranidae
28913	6-Banded Grouper	Cephalopholis sexmaculata	Serranidae
28912	Tomato Grouper	Cephalopholis sonnerati	Serranidae
28903	Grouper	Cephalopholis sp	Serranidae
28906	Pygmy Grouper	Cephalopholis spiloparaea	Serranidae
28914	Flag-Tailed Grouper	Cephalopholis urodeta	Serranidae
28915	Grouper	Cromileptes altivelis	Serranidae
28947	Orange Grouper	Epinephelus	Serranidae
		caeruleopunctatus	
28948	Brown-Spotted Grouper	Epinephelus chlorostigma	Serranidae
28960	Orange Spot Grouper	Epinephelus coioides	Serranidae
28957	Grouper	Epinephelus corallicola	Serranidae
28946	Grouper	Epinephelus cyanopodus	Serranidae
28920	Blotchy Grouper	Epinephelus fuscoguttatus	Serranidae
28921	Hexagon Grouper	Epinephelus hexagonatus	Serranidae
28918	Grouper	Epinephelus howlandi	Serranidae
28922	Giant Grouper	Epinephelus lanceolatus	Serranidae
28958	Grouper	Epinephelus macrospilos	Serranidae
28923	Highfin Grouper	Epinephelus maculatus	Serranidae
28950	Malabar Grouper	Epinephelus malabaricus	Serranidae
28949	Bl-Spot Honeycomb Grouper	Epinephelus melanostigma	Serranidae
28925	Honeycomb Grouper	Epinephelus merra	Serranidae
28942	Grouper	Epinephelus miliaris	Serranidae
28916	Grouper	Epinephelus morrhua	Serranidae
28951	Wavy-Lined Grouper	Epinephelus ongus	Serranidae
28926	Marbled Grouper	Epinephelus polyphekadion	Serranidae
28953	Grouper	Epinephelus retouti	Serranidae
28930	7-Banded Grouper	Epinephelus septemfasciatus	Serranidae
28924	Tidepool Grouper	Epinephelus socialis	Serranidae
28952	4-Saddle Grouper	Epinephelus spilotoceps	Serranidae
28928	Greasy Grouper	Epinephelus tauvina	Serranidae
28902	Truncated Grouper	<i>Epinephelus truncatus</i>	Serranidae

28943	Wh-Margined Grouper	Gracila albomarginata	Serranidae
28938	Squaretail Grouper	Plectropomus areolatus	Serranidae
28937	Saddleback Grouper	Plectropomus laevis	Serranidae
28954	Leopard Coral Trout	Plectropomus leopardus	Serranidae
28955	Blue-Lined Coral Trout	Plectropomus oligacanthus	Serranidae
28940	Powell'S Grouper	Saloptia powelli	Serranidae
28900	Sea Basses, Groupers	Serranidae	Serranidae
28944	Whmargin Lyretail Grouper	Variola albimarginata	Serranidae
35902	Fringelip Mullet	Crenimugil crenilabis	Mugilidae
35903	Yellowtail Mullet	Ellochelon vaigiensis	Mugilidae
35901	Engel'S Mullet	Moolgarda engeli	Mugilidae
35906	Bluespot Mullet	Moolgarda seheli	Mugilidae
35904	Gray Mullet	Mugil cephalus	Mugilidae
35900	Mullets	Mugilidae	Mugilidae
35905	Acute-Jawed Mullet	Neomyxus leuciscus	Mugilidae
33900	Rudderfish	Kyphosidae	Kyphosidae
33901	Highfin Rudderfish	Kyphosus cinerascens	Kyphosidae
33902	Lowfin Rudderfish	Kyphosus vaigiensis	Kyphosidae
33903	Insular Rudderfish	Kyphosus bigibbus	Kyphosidae
69251	Spider Crab	Achaeus japonicus	CRE-Crustaceans
67500	Snapping Shrimp	Alphaeidae	CRE-Crustaceans
67501	Snapping Shrimp	Alpheus bellulus	CRE-Crustaceans
67502	Snapping Shrimp	Alpheus paracrinitus	CRE-Crustaceans
64999	Anchylomerids	Anchylomeridae	CRE-Crustaceans
67951	Slipper Lobster	Arctides regalis	CRE-Crustaceans
60101	Acorn Barnacle	Balanus sp	CRE-Crustaceans
62050	Mantis Shrimp	Bathysquillidae	CRE-Crustaceans
69201	Box Crab	Calappa bicornis	CRE-Crustaceans
69202	Box Crab	Calappa calappa	CRE-Crustaceans
69203	Box Crab	Calappa hepatica	CRE-Crustaceans
69200	Box Crabs	Calappidae	CRE-Crustaceans
69252	Decorator Crab	Camposcia retusa	CRE-Crustaceans
69350	Cancrids	Cancridae	CRE-Crustaceans
69501	7-11 Crab	Carpilius convexus	CRE-Crustaceans
69502	7-11 Crab	Carpilius maculatus	CRE-Crustaceans
69401	Red-Legged Sw Crab	Charybdis erythrodactyla	CRE-Crustaceans
69402	Red Sw Crab	Charybdis hawaiiensis	CRE-Crustaceans
69204	Box Crab	Cycloes granulosa	CRE-Crustaceans
69301	Elbow Crab	Daldorfia horrida	CRE-Crustaceans

68202	Marine Hermit Crab	Dardanus gemmatus	CRE-Crustaceans
68204	Marine Hermit Crab	Dardanus megistos	CRE-Crustaceans
68203	Marine Hermit Crab	Dardanus pendunculatus	CRE-Crustaceans
68201	Marine Hermit Crab	Dardanus sp	CRE-Crustaceans
67121	Commensal Shrimp	Dasycaris zanzibarica	CRE-Crustaceans
67000	Decapod Crustaceans	Decapoda	CRE-Crustaceans
68200	Marine Hermit Crabs	Diogenidae	CRE-Crustaceans
69161	Dorippid Crab	Dorippe frascone	CRE-Crustaceans
69171	Sponge Crab	Dromia dormia	CRE-Crustaceans
69170	Sponge Crabs	Dromiidae	CRE-Crustaceans
68701	Mole Crab	Emerita pacifica	CRE-Crustaceans
67851	Soft Lobster	Enoplometopus debelius	CRE-Crustaceans
67852	Hairy Lobster	Enoplometopus occidentalis	CRE-Crustaceans
69553	Redeye Crab	Eriphia sebana	CRE-Crustaceans
69554	Red-Reef Crab	Etisus dentatus	CRE-Crustaceans
69551	Red-Reef Crab	Etisus splendidus	CRE-Crustaceans
69555	Brown-Reef Crab	Etisus utilis	CRE-Crustaceans
62100	Mantis Shrimp	Eurysquillidae	CRE-Crustaceans
68500	Squat Lobsters	Galatheidae	CRE-Crustaceans
69850	Gecarcinids	Gecarcinidae	CRE-Crustaceans
67220	Bbee And Harlequin Shrimp	Gnathophyllidae	CRE-Crustaceans
67221	Bumblebee Shrimp	Gnathophylloides mineri	CRE-Crustaceans
67222	Bumblebee Shrimp	Gnathophyllum americanum	CRE-Crustaceans
62203	Mantis Shrimp	Gonodactylaceus mutatus	CRE-Crustaceans
62201	Mantis Shrimp	Gonodactylellus affinis	CRE-Crustaceans
62200	Mantis Shrimp	Gonodactylidae	CRE-Crustaceans
62202	Mantis Shrimp	Gonodactylus chiragra	CRE-Crustaceans
62204	Mantis Shrimp	Gonodactylus platysoma	CRE-Crustaceans
62205	Mantis Shrimp	Gonodactylus smithii	CRE-Crustaceans
69860	Shore Crabs	Grapsidae	CRE-Crustaceans
69861	Shore Crab	Grapsus albolineatus	CRE-Crustaceans
69862	Shore Crab	Grapsus grapsus tenuicrustat	CRE-Crustaceans
69950	Hapalocarcinids	Hapalocarcinidae	CRE-Crustaceans
62550	Mantis Shrimp	Harposquillidae	CRE-Crustaceans
62300	Mantis Shrimp	Hemisquillidae	CRE-Crustaceans
67104	Deepwater Shrimps	Heteropenaeus sp	CRE-Crustaceans
67210	Hump-Backed Shrimp	Hippolytidae	CRE-Crustaceans
69100	Homolids	Homolidae	CRE-Crustaceans

67853	Soft Lobster	Hoplometopus holthuisi	CRE-Crustaceans
67223	Harlequin Shrimp	Hymenocera picta	CRE-Crustaceans
64810	Hyperid Amphipods	Hyperiidae	CRE-Crustaceans
67921	Slipper Lobster	Ibacus sp	CRE-Crustaceans
69000	True Crabs	Io Brachyura	CRE-Crustaceans
67931	Long-Handed Lobster	Justitia longimanus	CRE-Crustaceans
67211	Hump-Backed Shrimp	Koror misticius	CRE-Crustaceans
69302	Elbow Crab	Lambrus longispinis	CRE-Crustaceans
67111	Palaemonid Shrimp	Leander plumosus	CRE-Crustaceans
68300	Lithodids	Lithodidae	CRE-Crustaceans
69421	Swimming Crab	Lupocyclus grimquedentatus	CRE-Crustaceans
64830	Lycaeids	Lycaeidae	CRE-Crustaceans
69151	3-Toothed Frog Crab	<i>Lyreidus tridentatus</i>	CRE-Crustaceans
62800	Mantis Shrimp	Lysiosquillidae	CRE-Crustaceans
60100	Barnacles	Lythoglyptidae	CRE-Crustaceans
69901	Telescope-Eye Crab	<i>Macrophthalmus</i>	CRE-Crustaceans
0,,, 0,1		telescopicus	
69250	Spider Crabs	Majidae	CRE-Crustaceans
67101	Penaeid Prawn	Metapenaeopsis sp.1	CRE-Crustaceans
67102	Penaeid Prawn	Metapenaeopsis sp.2	CRE-Crustaceans
67103	Penaeid Prawn	Metapenaeopsis sp.3	CRE-Crustaceans
69205	Box Crab	Mursia spinimanus	CRE-Crustaceans
62900	Mantis Shrimp	Nannosquillidae	CRE-Crustaceans
67850	Soft Lobsters	Nephropidae	CRE-Crustaceans
69902	Large Ghost Crab	Ocypode ceratopthalma	CRE-Crustaceans
69903	Ghost Crab	Ocypode cordimana	CRE-Crustaceans
69904	Ghost Crab	Ocypode saratum	CRE-Crustaceans
69900	Ocypodids	Ocypodidae	CRE-Crustaceans
62350	Mantis Shrimp	Odontodactylidae	CRE-Crustaceans
62351	Mantis Shrimp	Odontodactylus brevirostris	CRE-Crustaceans
62352	Mantis Shrimp	Odontodactylus scyallarus	CRE-Crustaceans
62701	Mantis Shrimp	Oratosquilla oratoria	CRE-Crustaceans
62700	Mantis Shrimp	Oratosquillidae	CRE-Crustaceans
68400	Soldier Hermit Crab	Paguridae	CRE-Crustaceans
68401	Coral Hermit Crab	Paguritta gracilipes	CRE-Crustaceans
68402	Coral Hermit Crab	Paguritta harmsi	CRE-Crustaceans
67110	Palaemonid Shrimp	Palaemonidae	CRE-Crustaceans
67917	Mole Lobster	Palinurellus wieneckii	CRE-Crustaceans
67918	Painted Crayfish	Panulirus albiflagellum	CRE-Crustaceans

67911	Painted Crayfish	Panulirus homarus	CRE-Crustaceans
67912	Painted Crayfish	Panulirus longipes	CRE-Crustaceans
67914	Painted Crayfish	Panulirus ornatus	CRE-Crustaceans
67910	Painted Crayfish	Panulirus sp	CRE-Crustaceans
67916	Painted Crayfish	Panulirus versicolor	CRE-Crustaceans
69300	Elbow Crabs	Parthenopidae	CRE-Crustaceans
67100	Panaeid Prawns	Penaeidae	CRE-Crustaceans
67106	Penaeid Prawn	Penaeus latisulcatus	CRE-Crustaceans
67105	Penaeid Prawn	Penaeus monodon	CRE-Crustaceans
69864	Flat Rock Crab	Percnon planissimum	CRE-Crustaceans
67122	Commensal Shrimp	Periclimenes amboinensis	CRE-Crustaceans
67123	Commensal Shrimp	Periclimenes brevicarpalis	CRE-Crustaceans
67124	Commensal Shrimp	Periclimenes cf ceratophthalmus	CRE-Crustaceans
67125	Commensal Shrimp	Periclimenes holthuisi	CRE-Crustaceans
67126	Commensal Shrimp	Periclimenes imperator	CRE-Crustaceans
67127	Commensal Shrimp	Periclimenes inornatus	CRE-Crustaceans
67128	Commensal Shrimp	Periclimenes kororensis	CRE-Crustaceans
67129	Commensal Shrimp	Periclimenes ornatus	CRE-Crustaceans
67130	Commensal Shrimp	Periclimenes psamathe	CRE-Crustaceans
67131	Commensal Shrimp	Periclimenes soror	CRE-Crustaceans
67132	Commensal Shrimp	Periclimenes tenuipes	CRE-Crustaceans
67133	Commensal Shrimp	Periclimenes venustus	CRE-Crustaceans
68601	Porcelain Crab	Petrolisthes lamarkii	CRE-Crustaceans
64820	Phronimids	Phronimidae	CRE-Crustaceans
69863	Shore Crab	Plagusia depressa tuberculata	CRE-Crustaceans
64840	Platyscelids	Platyscelidae	CRE-Crustaceans
67134	Commensal Shrimp	Pliopotonia furtiva	CRE-Crustaceans
69461	Long-Eyed Swimming Crab	Podophthalmus vigil	CRE-Crustaceans
67135	Commensal Shrimp	Pontonides uncigar	CRE-Crustaceans
67120	Commensal Shrimp	Pontoniidae	CRE-Crustaceans
68600	Porcellanid Crabs	Porcellanidae	CRE-Crustaceans
69400	Swimming Crabs	Portunidae	CRE-Crustaceans
69432	Blue Swimming Crab	Portunus pelagicus	CRE-Crustaceans
69431	Swimming Crab	Portunus sanguinolentus	CRE-Crustaceans
62400	Mantis Shrimp	Protosquillidae	CRE-Crustaceans
62501	Mantis Shrimp	Pseudosquilla ciliata	CRE-Crustaceans
62500	Mantis Shrimp	Pseudosquillidae	CRE-Crustaceans
67231	Hingebeak Prawn	Rhinchocinetes hiatti	CRE-Crustaceans

67230	Hinge-Beaked Prawns	Rhynchocinetidae	CRE-Crustaceans
69471	Mangrove Crab	Scylla serrata	CRE-Crustaceans
67604	Solenocerids	Solenoceridae	CRE-Crustaceans
62600	Mantis Shrimp	Squillidae	CRE-Crustaceans
67136	Commensal Shrimp	Stegopontonia commensalis	CRE-Crustaceans
67200	Cleaner Shrimp	Stenopodidae	CRE-Crustaceans
67201	Banded Coral Shrimp	Stenopus hispidus	CRE-Crustaceans
62000	Mantis Shrimps	Stomatopoda	CRE-Crustaceans
67503	Snapping Shrimp	Synalpheus carinatus	CRE-Crustaceans
60102	Acorn Barnacle	Tetraclitella divisa	CRE-Crustaceans
69481	Swimming Crab	Thalamita crenata	CRE-Crustaceans
67212	Ambonian Shrimp	Thor amboinensis	CRE-Crustaceans
69598	Xanthid Crab	Unid Megalops	CRE-Crustaceans
69499	Portunid Crab	Unid sp.1	CRE-Crustaceans
69599	Xanthid Crab	Unid sp.1	CRE-Crustaceans
69498	Portunid Crab	Unid sp.2	CRE-Crustaceans
69597	Xanthid Crab	Unid sp.2	CRE-Crustaceans
67112	Palaemonid Shrimp	Urocaridella antonbruunii	CRE-Crustaceans
69500	Dark-Finger Coral Crabs	Xanthidae	CRE-Crustaceans
69870	Urchin Crab	Zebrida adamsii	CRE-Crustaceans
69552	Shallow Reef Crab	Zosymus aeneus	CRE-Crustaceans
24300	Squirrel,Soldierfishes	Holocentridae	Holocentridae
24398	Squirrelfishes	Holocentrinae	Holocentridae
24399	Soldierfishes	Myripristinae	Holocentridae
24313	Bronze Soldierfish	Myripristis adusta	Holocentridae
24314	Brick Soilderfish	Myripristis amaena	Holocentridae
24331	Doubletooth Soldierfish	Myripristis amaena	Holocentridae
24315	Bigscale Soldierfish	Myripristis berndti	Holocentridae
24324	Yellowfin Soldierfish	Myripristis chryseres	Holocentridae
24317	Pearly Soldierfish	Myripristis kuntee	Holocentridae
24318	Red Soldierfish	Myripristis murdjan	Holocentridae
24322	Scarlet Soldierfish	Myripristis pralinia	Holocentridae
24319	Violet Soldierfish	Myripristis violacea	Holocentridae
24320	White-Tipped Soldierfish	Myripristis vittata	Holocentridae
24326	White-Spot Soldierfish	Myripristis woodsi	Holocentridae
24309	Clearfin Squirrelfish	Neoniphon argenteus	Holocentridae
24312	Yellowstriped Squirrelfish	Neoniphon aurolineatus	Holocentridae
24310	Blackfin Squirrlefish	Neoniphon opercularis	Holocentridae
24311	Bloodspot Squirrelfish	Neoniphon sammara	Holocentridae

24340	Deepwater Soldierfish	Ostichthys brachygnathus	Holocentridae
24323	Deepwater Soldierfish	Ostichthys kaianus	Holocentridae
24321	Cardinal Squirrelfish	Plectrypops lima	Holocentridae
24301	Tailspot Squirrelfish	Sargocentron	Holocentridae
		caudimaculatum	
24332	3-Spot Squirrelfish	Sargocentron cornutum	Holocentridae
24302	Crown Squirrelfish	Sargocentron diadema	Holocentridae
24330	Spotfin Squirrelfish	Sargocentron dorsomaculatum	Holocentridae
24334	Furcate Squirrelfish	Sargocentron furcatum	Holocentridae
24327	Samurai Squirrelfish	Sargocentron ittodai	Holocentridae
24333	Squirrelfish	Sargocentron lepros	Holocentridae
24328	Blackspot Squirrelfish	Sargocentron melanospilos	Holocentridae
24304	Finelined Squirrelfish	Sargocentron microstoma	Holocentridae
24305	Dark-Striped Squirrelfish	Sargocentron praslin	Holocentridae
24303	Speckled Squirrelfish	Sargocentron punctatissimum	Holocentridae
24306	Long-Jawed Squirrelfish	Sargocentron spiniferum	Holocentridae
24307	Blue-Lined Squirrelfish	Sargocentron tiere	Holocentridae
24308	Pink Squirrelfish	Sargocentron tieroides	Holocentridae
24329	Violet Squirrelfish	Sargocentron violaceum	Holocentridae
92102	Algae	Enteromorpha clathrata	Algae
92200	Algae	Caulerpaceae	Algae
92217	Algae	Caulerpa racemosa	Algae
93602	Algae	Sargassum polycystum	Algae
93604	Algae	Turbinaria ornata	Algae
95000	Algae	Div Anthophyta	Algae
95003	Algae	Halodule uninervis	Algae
36201	Chiseltooth Wrasse	Anampses caeruleopunctatus	Labridae
36297	Geographic Wrasse	Anampses geographicus	Labridae
36268	Wrasse	Anampses melanurus	Labridae
36202	Yellowtail Wrasse	Anampses meleagrides	Labridae
36203	Yellowbreasted Wrasse	Anampses twisti	Labridae
36205	Lyretail Hogfish	Bodianus anthioides	Labridae
36206	Axilspot Hogfish	Bodianus axillaris	Labridae
36288	2-Spot Slender Hogfish	Bodianus bimaculatus	Labridae
36269	Diana'S Hogfish	Bodianus diana	Labridae
36270	Blackfin Hogfish	Bodianus loxozonus	Labridae
36271	Mesothorax Hogfish	Bodianus mesothorax	Labridae

36243	Hogfish	Bodianus tanyokidus	Labridae
36209	Floral Wrasse	Cheilinus chlorourus	Labridae
36210	Red-Breasted Wrasse	Cheilinus fasciatus	Labridae
36211	Snooty Wrasse	Cheilinus oxycephalus	Labridae
36213	Tripletail Wrasse	Cheilinus trilobatus	Labridae
36216	Cigar Wrasse	Cheilio inermis	Labridae
36217	Yel-Cheeked Tuskfish	Choerodon anchorago	Labridae
36313	Harlequin Tuskfish	Choerodon fasciatus	Labridae
36305	Wrasse	Cirrhilabrus balteatus	Labridae
36272	Wrasse	Cirrhilabrus cyanopleura	Labridae
36273	Exquisite Wrasse	Cirrhilabrus exquisitus	Labridae
36306	Johnson'S Wrasse	Cirrhilabrus johnsoni	Labridae
36218	Wrasse	Cirrhilabrus katherinae	Labridae
36274	Yellowband Wrasse	Cirrhilabrus luteovittatus	Labridae
36307	Rhomboid Wrasse	Cirrhilabrus rhomboidalis	Labridae
36309	Red-Margined Wrasse	Cirrhilabrus	Labridae
		rubrimarginatus	
36219	Clown Coris	Coris aygula	Labridae
36275	Dapple Coris	Coris batuensis	Labridae
36314	Pale-Barred Coris	Coris dorsomacula	Labridae
36220	Yellowtailed Coris	Coris gaimardi	Labridae
36221	Knife Razorfish	Cymolutes praetextatus	Labridae
36291	Finescale Razorfish	Cymolutes torquatus	Labridae
36300	Wandering Cleaner Wrasse	Diproctacanthus xanthurus	Labridae
36222	Sling-Jawed Wrasse	Epibulus insidiator	Labridae
36276	Sling-Jawed Wrasse	Epibulus n sp	Labridae
36223	Bird Wrasse	Gomphosus varius	Labridae
36224	2-Spotted Wrasse	Halichoeres biocellatus	Labridae
36277	Drab Wrasse	Halichoeres chloropterus	Labridae
36278	Canary Wrasse	Halichoeres chrysus	Labridae
36318	Wrasse	Halichoeres dussumieri	Labridae
36226	Checkerboard Wrasse	Halichoeres hortulanus	Labridae
36227	Weedy Surge Wrasse	Halichoeres margaritaceus	Labridae
36228	Dusky Wrasse	Halichoeres marginatus	Labridae
36279	Pinstriped Wrasse	Halichoeres melanurus	Labridae
36229	Black-Ear Wrasse	Halichoeres melasmapomus	Labridae
36311	Ornate Wrasse	Halichoeres ornatissimus	Labridae
36315	Seagrass Wrasse	Halichoeres papilionaceus	Labridae
36298	Wrasse	Halichoeres prosopeion	Labridae
36304	Wrasse	Halichoeres purpurascens	Labridae

36281 Zigzag Wrasse Halichoeres scapularis Labridae 36312 Shwartz Wrasse Halichoeres shwartzi Labridae 36282 Wrasse Halichoeres sp Labridae 36280 3-Spot Wrasse Halichoeres spinaculatus Labridae 36230 3-Spot Wrasse Halichoeres zeylonicus Labridae 36231 Striped Clown Wrasse Hemigymnus fasciatus Labridae 36303 Wrasse Hologymnosus annulatus Labridae 36233 Ring Wrasse Hologymnosus annulatus Labridae 36234 Tubelip Wrasse Labridae Labridae 36235 Bicolor Cleaner Wrasse Labridae Labridae 36236 Bluestreak Cleaner Wrasse Labroides bicolor Labridae 36237 Black-Spot Cleaner Wrasse Labroides pectoralis Labridae 36238 Allen'S Wrasse Labropsis nationota Labridae 36239 Wedge-Tailed Wrasse Labropsis nationota Labridae 36240 Leopard Wrasse Macropharyngodon Labridae 36241 Seagrass Razoffish Novaculichthys <th>36280</th> <th>Richmond'S Wrasse</th> <th>Halichoeres richmondi</th> <th>Labridae</th>	36280	Richmond'S Wrasse	Halichoeres richmondi	Labridae
36282 Wrasse Halichoeres sp Labridae 36230 3-Spot Wrasse Halichoeres trimaculatus Labridae 36231 Striped Clown Wrasse Hemigymnus fasciatus Labridae 36231 Striped Clown Wrasse Hemigymnus fasciatus Labridae 36232 1/2 & 1/2 Wrasse Hemigymnus melapterus Labridae 36233 Ring Wrasse Hologymnosus annulatus Labridae 36234 Tubelip Wrasse Labridae Labridae 36235 Bicolor Cleaner Wrasse Labridaes bicolor Labridae 36263 Bluestreak Cleaner Wrasse Labroides bicolor Labridae 36237 Black-Spot Cleaner Wrasse Labroides pectoralis Labridae 36238 Micronesian Wrasse Labroides pectoralis Labridae 36239 Wedge-Tailed Wrasse Labropsis micronesica Labridae 36240 Leopard Wrasse Macropharyngodon Labridae 36241 Seagrass Razorfish Novaculichthys areniourus Labridae 36264 Dragon Wrasse Oxycheilinus arenatus Labridae 36264 Seagrass Razorfish Novaculichthys areniourus Labridae 36264 Dragon Wrasse Oxycheilinus arenatus Labridae	36281	Zigzag Wrasse	Halichoeres scapularis	Labridae
362303-Spot WrasseHalichoeres trimaculatusLabridae36225WrasseHalichoeres zeylonicusLabridae36231Striped Clown WrasseHemigymnus fasciatusLabridae362321/2 & 1/2 WrasseHemigymnus melapterusLabridae36303WrasseHologymnosus annulatusLabridae36234Tubelip WrasseLabridaeLabridae36235Bicolor Cleaner WrasseLabridaeLabridae36236Bluestreak Cleaner WrasseLabroides bicolorLabridae36237Black-Spot Cleaner WrasseLabroides pectoralisLabridae36238Allen'S WrasseLabroides pectoralisLabridae36239Wedge-Tailed WrasseLabropsis micronesicaLabridae36240Leopard WrasseLabropsis micronesicaLabridae36241Seagrass RazorfishNovaculichthys taeniourusLabridae36242Dragon WrasseOxycheilinus arenatusLabridae36244Seagrass RazorfishNovaculichthys taeniourusLabridae362642-Spot WrasseOxycheilinus orientalisLabridae36270Arenatus WrasseOxycheilinus digranmusLabridae36284Negros WrasseOxycheilinus digranmusLabridae36297Arenatus WrasseOxycheilinus digranmusLabridae36298Celebes WrasseOxycheilinus digranmusLabridae36294NesseOxycheilinus binaculatusLabridae36295Grinal WrasseOxycheilinus bridae	36312	Shwartz Wrasse	Halichoeres shwartzi	Labridae
36225WrasseHalichoeres zeylonicusLabridae36231Striped Clown WrasseHemigymnus fasciatusLabridae363221/2 & L/2 WrasseHemigymnus melapterusLabridae36303WrasseHologymnosus annulatusLabridae36234Tubelip WrasseHologymnosus annulatusLabridae36234Tubelip WrasseLabrichthys unilineatusLabridae36235Bicolor Cleaner WrasseLabridaeLabridae36266Bluestreak Cleaner WrasseLabroides bicolorLabridae36237Black-Spot Cleaner WrasseLabropsis alleniLabridae36238Allen'S WrasseLabropsis alleniLabridae36239Wedge-Tailed WrasseLabropsis micronesicaLabridae36240Leopard WrasseMacropharyngodonLabridae36241Seagrass RazorfishNovaculichthysLabridae36242Dragon WrasseOxycheilinus arenatusLabridae36244Seagrass RazorfishNovaculichthys taeniourusLabridae362642-Spot WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus arenatusLabridae36270Arenatus WrasseOxycheilinus arenatusLabridae36284Negros WrasseOxycheilinus arenatusLabridae36241Seagrass RazorfishNovaculichthys ancrolepidotusLabridae362642-Spot WrasseOxycheilinus arenatusLabridae36265Bandcheek WrasseOxycheilinus digrammus	36282	Wrasse	Halichoeres sp	Labridae
36231Striped Clown WrasseHemigymnus fasciatusLabridae362321/2 & 1/2 WrasseHemigymnus melapterusLabridae36333WrasseHologymnosus annulatusLabridae36234Tubelip WrasseLabridaeLabridae36235Bicolor Cleaner WrasseLabridae bicolorLabridae36236Bicolor Cleaner WrasseLabridae bicolorLabridae36237Black-Spot Cleaner WrasseLabrodides bicolorLabridae36238Allen'S WrasseLabrodides pectoralisLabridae36239Wedge-Tailed WrasseLabropsis alleniLabridae36240Leopard WrasseLabropsis micronesicaLabridae36241Seagrass RazorfishMacropharyngodon meleagrisLabridae36242Dragon WrasseMacropharyngodon meleagrisLabridae36243Seagrass RazorfishNovaculichthys taeniourus macrolepidotusLabridae36244Celebes WrasseOxycheilinus arenatus LabridaeLabridae36241Seagrass RazorfishNovaculichthys taeniourus macrolepidotusLabridae36242Dragon WrasseOxycheilinus orientalis LabridaeLabridae36243Seagrass RazorfishNovaculichthys taeniourus macrolepidotusLabridae36244SeagrassOxycheilinus binaculatus LabridaeLabridae36245Oriental WrasseOxycheilinus orientalis LabridaeLabridae36241SeagrassRazorfishNovaculichthys taeniourus LabridaeLabridae <td>36230</td> <td>3-Spot Wrasse</td> <td>Halichoeres trimaculatus</td> <td>Labridae</td>	36230	3-Spot Wrasse	Halichoeres trimaculatus	Labridae
362321/2 & 1/2 WrasseHenigymnus melapterusLabridae36303WrasseHologymnosus annulatusLabridae36233Ring WrasseHologymnosus doliatusLabridae36234Tubelip WrasseLabridaeLabridae36235Bicolor Cleaner WrasseLabridaeLabridae36236Bluestreak Cleaner WrasseLabroides bicolorLabridae36237Black-Spot Cleaner WrasseLabroides dimidiatusLabridae36238Allen'S WrasseLabroides gectoralisLabridae36239Wedge-Tailed WrasseLabropsis alleniLabridae36240Leopard WrasseLabropsis micronesicaLabridae36241Seagrass RazorfishMacropharyngodon negrosensisLabridae36242Dragon WrasseNovaculichthys macrolepidotusLabridae36243Sancheek WrasseOxycheilinus digrammusLabridae36242Dragon WrasseOxycheilinus digrammusLabridae36243Seagrass RazorfishNovaculichthys taeniourusLabridae36244Scebes WrasseOxycheilinus digrammusLabridae36255Driental WrasseOxycheilinus utifasciatusLabridae362642-Spot WrasseOxycheilinus utifasciatusLabridae362642-Spot WrasseOxycheilinus utifasciatusLabridae36265Bandcheek WrasseOxycheilinus utifasciatusLabridae362642-Spot WrasseParacheilinus bellaeLabridae36292WrasseParache	36225	Wrasse	Halichoeres zeylonicus	Labridae
36303WrasseHologymnosus annulatusLabridae36233Ring WrasseHologymnosus doliatusLabridae36234Tubelip WrasseLabridaeLabridae36200WrasseLabridaeLabridae36200WrasseLabridaeLabridae36235Bicolor Cleaner WrasseLabroides bicolorLabridae36266Bluestreak Cleaner WrasseLabroides dimidiatusLabridae36237Black-Spot Cleaner WrasseLabroides pectoralisLabridae36238Micronesian WrasseLabropsis alleniLabridae36239Wedge-Tailed WrasseLabropsis xanthonotaLabridae36240Leopard WrasseMacropharyngodon meleagrisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseOxycheilinus arenatus atenidaeLabridae36243Celebes WrasseOxycheilinus arenatus atenidaeLabridae36244Seagrass RazorfishNovaculichthys macrolepidotusLabridae36245Dragon WrasseOxycheilinus digrammus atenidaeLabridae362642-Spot WrasseOxycheilinus digrammus atenidaeLabridae36263Bandcheek WrasseOxycheilinus digrammus atenidaeLabridae36215Oriental WrasseOxycheilinus digrammus atenidaeLabridae36292WrasseParacheilinus bellaeLabridae36293WrasseParacheilinus sp.Labridae36244 <td< td=""><td>36231</td><td>Striped Clown Wrasse</td><td>Hemigymnus fasciatus</td><td>Labridae</td></td<>	36231	Striped Clown Wrasse	Hemigymnus fasciatus	Labridae
36233Ring WrasseHologymnosus doliatusLabridae36234Tubelip WrasseLabrichthys unilineatusLabridae36200WrasseLabridaeLabridae36200WrasseLabridaeLabridae36200WrasseLabroides bicolorLabridae36235Bicolor Cleaner WrasseLabroides bicolorLabridae36236Bluestreak Cleaner WrasseLabroides pectoralisLabridae36237Black-Spot Cleaner WrasseLabropsis alleniLabridae36238Micronesian WrasseLabropsis micronesicaLabridae36239Wedge-Tailed WrasseLabropsis micronesicaLabridae36240Leopard WrasseMacropharyngodonLabridae36241Seagrass RazoffishNovaculichthysLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae36244Seagrass RazoffishNovaculichthys taeniourusLabridae362642-Spot WrasseOxycheilinus arenatusLabridae36208Celebes WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseParacheilinus pinaciutusLabridae36293WrasseParacheilinus pinaciutusLabridae36214SeagrassSeagrasDavidae36244StrastedParaseParacheilinus digrammusLabridae36253Bandcheek WrasseOxycheilinus arenatusLabridae36214 <td< td=""><td>36232</td><td>1/2 &1/2 Wrasse</td><td>Hemigymnus melapterus</td><td>Labridae</td></td<>	36232	1/2 &1/2 Wrasse	Hemigymnus melapterus	Labridae
36234Tubelip WrasseLabrichthys unilineatusLabridae36200WrasseLabridaeLabridae36200WrasseLabridaeLabridae36235Bicolor Cleaner WrasseLabridae bicolorLabridae36266Bluestreak Cleaner WrasseLabroides dimidiatusLabridae36237Black-Spot Cleaner WrasseLabrojes pectoralisLabridae36238Micronesian WrasseLabropsis alleniLabridae36239Wedge-Tailed WrasseLabropsis xanthonotaLabridae36240Leopard WrasseMacropharyngodon meleagrisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae36244Seagrass RazorfishNovaculichthys taeniourusLabridae36242Dragon WrasseOxycheilinus arenatusLabridae362442-Spot WrasseOxycheilinus digrammusLabridae362642-Spot WrasseOxycheilinus bimaculatusLabridae36263Bandcheek WrasseOxycheilinus orientalisLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36292WrasseParacheilinus sp.Labridae36293WrasseParacheilinus sp.Labridae36293WrassePolylepion russelliLabridae36294Striated WrassePseudocheilinus evanidusLabridae36293WrasseParacheilinus sp.Labridae3	36303	Wrasse	Hologymnosus annulatus	Labridae
36200WrasseLabridaeLabridae36235Bicolor Cleaner WrasseLabroides bicolorLabridae36266Bluestreak Cleaner WrasseLabroides dimidiatusLabridae36237Black-Spot Cleaner WrasseLabroides pectoralisLabridae36283Allen'S WrasseLabropsis alleniLabridae36238Micronesian WrasseLabropsis micronesicaLabridae36239Wedge-Tailed WrasseLabropsis xanthonotaLabridae36240Leopard WrasseMacropharyngodon meleagrisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseOxycheilinus arenatusLabridae36243Seagrass RazorfishNovaculichthys taeniourusLabridae36244SeegeneseOxycheilinus celebecusLabridae36245Oriental WrasseOxycheilinus orientalisLabridae362642-Spot WrasseOxycheilinus orientalisLabridae36263Bandcheek WrasseOxycheilinus digrammusLabridae362642-Spot WrasseOxycheilinus orientalisLabridae36275Oriental WrasseOxycheilinus unifasciatusLabridae36283Bandcheek WrasseParacheilinus sp.Labridae36294WrasseParacheilinus bellaeLabridae36295WrassePseudocheilinops ataeniaLabridae36294WrassePseudocheilinus bexataeniaLabridae36295WrassePseudocheilinus bexa	36233	Ring Wrasse	Hologymnosus doliatus	Labridae
36235Bicolor Cleaner WrasseLabrides bicolorLabridae36266Bluestreak Cleaner WrasseLabroides dimidiatusLabridae36237Black-Spot Cleaner WrasseLabropsis alleniLabridae36283Allen'S WrasseLabropsis alleniLabridae36238Micronesian WrasseLabropsis micronesicaLabridae36239Wedge-Tailed WrasseLabropsis xanthonotaLabridae36240Leopard WrasseMacropharyngodon meleagrisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus digrammusLabridae362642-Spot WrasseOxycheilinus bimaculatusLabridae36207Arenatus WrasseOxycheilinus bimaculatusLabridae36208Celebes WrasseOxycheilinus bimaculatusLabridae36210Oriental WrasseOxycheilinus orientalisLabridae36231MarceseParacheilinus prientalisLabridae36242Dragon WrasseOxycheilinus digrammusLabridae36243Bandcheek WrasseOxycheilinus bimaculatusLabridae36244Striated WrasseParacheilinus prientalisLabridae36235WrasseParacheilinus sp.Labridae362456 Line WrassePseudocheilinus evanidusLabridae36244Striated Wr	36234	Tubelip Wrasse	Labrichthys unilineatus	Labridae
36266Bluestreak Cleaner WrasseLabrides dimidiatusLabridae36237Black-Spot Cleaner WrasseLabroides pectoralisLabridae36283Allen'S WrasseLabropsis alleniLabridae36238Micronesian WrasseLabropsis micronesicaLabridae36239Wedge-Tailed WrasseLabropsis xanthonotaLabridae36240Leopard WrasseMacropharyngodon meleagrisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus clebecusLabridae36208Celebes WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus bellaeLabridae36233WrasseParacheilinus pellaeLabridae36244Striated WrassePseudocheilinus sp.Labridae36245G Line WrassePseudocheilinus sp.Labridae36244Striated WrassePseudocheilinus sp.Labridae36255Line WrassePseudocheilinus sp.Labridae36264Striated WrassePseudocheilinus sp.Labridae36215Oriental WrassePseudocheilinus sp.Labridae36214Ringtail WrassePseudocheilinus sp.Labridae36215Oriental WrassePseudocheilinus sp.Labridae36216WrassePseudocheilinus sp. <t< td=""><td>36200</td><td>Wrasse</td><td>Labridae</td><td>Labridae</td></t<>	36200	Wrasse	Labridae	Labridae
36237Black-Spot Cleaner WrasseLabridae pectoralisLabridae36283Allen'S WrasseLabropsis alleniLabridae36238Micronesian WrasseLabropsis micronesicaLabridae36239Wedge-Tailed WrasseLabropsis xanthonotaLabridae36240Leopard WrasseMacropharyngodon meleagrisLabridae36284Negros WrasseMacropharyngodon negrosensisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae36243Seagrass RazorfishNovaculichthys taeniourusLabridae362442-Spot WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus bimaculatusLabridae36208Celebes WrasseOxycheilinus orientalisLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus orientalisLabridae36293WrasseParacheilinus bellaeLabridae36294WrassePseudocheilinog staeniaLabridae36294Striated WrassePseudocheilinus evanidusLabridae36244Striated WrassePseudocheilinus peniaLabridae36293WrassePseudocheilinus sp.Labridae36294Striated WrassePseudocheilinus peniaLabridae362456 Line WrassePseudocheilinus peniaLabridae362468 Line Wrasse <td>36235</td> <td>Bicolor Cleaner Wrasse</td> <td>Labroides bicolor</td> <td>Labridae</td>	36235	Bicolor Cleaner Wrasse	Labroides bicolor	Labridae
36283Allen'S WrasseLabropsis alleniLabridae36238Micronesian WrasseLabropsis micronesicaLabridae36239Wedge-Tailed WrasseLabropsis xanthonotaLabridae36240Leopard WrasseMacropharyngodon meleagrisLabridae36284Negros WrasseMacropharyngodon negrosensisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae362642-Spot WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus bimaculatusLabridae36208Celebes WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36292WrasseParacheilinus bullaeLabridae36293WrasseParacheilinus sp.Labridae36294WrassePseudocheilinops ataeniaLabridae36295Kiriated WrassePseudocheilinus sp.Labridae36294Striated WrassePseudocheilinus sp.Labridae36294Striated WrassePseudocheilinus peniaLabridae36294Striated WrassePseudocheilinus peniaLabridae36294Striated WrassePseudocheilinus peniaLabridae36294Striated WrassePseudocheilinus peniaLabridae362456 Line WrassePseudocheilinus peniaLabridae362468 Line WrassePseudocheilinus peni	36266	Bluestreak Cleaner Wrasse	Labroides dimidiatus	Labridae
36238Micronesian WrasseLabripsis micronesicaLabridae36239Wedge-Tailed WrasseLabropsis xanthonotaLabridae36240Leopard WrasseMacropharyngodon meleagrisLabridae36284Negros WrasseMacropharyngodon negrosensisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae362642-Spot WrasseOxycheilinus arenatusLabridae36208Celebes WrasseOxycheilinus digrammusLabridae36208Celebes WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus orientalisLabridae36213WrasseParacheilinus pellaeLabridae36214Kingtail WrasseParacheilinus bellaeLabridae36208Celebes WrasseParacheilinus bellaeLabridae36213WrasseParacheilinus bellaeLabridae36214Ringtail WrasseParacheilinus bellaeLabridae36215Oriental WrasseParacheilinus bellaeLabridae36293WrasseParacheilinus bellaeLabridae36294WrassePseudocheilinus evanidusLabridae36244Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus periatiaLabridae362548 Line WrassePseudocheilinus periatiaLabridae36265362651 LabridaeLabr	36237	Black-Spot Cleaner Wrasse	Labroides pectoralis	Labridae
36239Wedge-Tailed WrasseLabripsis xanthonotaLabridae36240Leopard WrasseMacropharyngodon meleagrisLabridae36284Negros WrasseMacropharyngodon negrosensisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae362642-Spot WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus celebecusLabridae36208Celebes WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus unifasciatusLabridae36293WrasseParacheilinus sp.Labridae36294WrassePseudocheilinus sp.Labridae36294Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae36244Striated WrassePseudocheilinus psp.Labridae36294KrassePseudocheilinus sp.Labridae362456 Line WrassePseudocheilinus pateniaLabridae362456 Line WrassePseudocheilinus sp.Labridae362468 Line WrassePseudocheilinus sp.Labridae36255Line WrassePseudocheilinus pateniaLabridae362468 Line WrassePseudocheilinus sp.Labridae362468 Line WrassePseudocheilinus sp.	36283	Allen'S Wrasse	Labropsis alleni	Labridae
36240Leopard WrasseMacropharyngodon meleagrisLabridae36284Negros WrasseMacropharyngodon negrosensisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae36207Arenatus WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus bimaculatusLabridae36208Celebes WrasseOxycheilinus celebecusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus orientalisLabridae36293WrasseParacheilinus bellaeLabridae36294WrassePesudocheilinus sp.Labridae36294WrassePseudocheilinos ataeniaLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus sp.Labridae362456 Line WrassePseudocheilinus sp.Labridae36245362468 Line WrassePseudocheilinus sp.Labridae	36238	Micronesian Wrasse	Labropsis micronesica	Labridae
meleagrismeleagris36284Negros WrasseMacropharyngodon negrosensisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae36207Arenatus WrasseOxycheilinus arenatusLabridae36208Celebes WrasseOxycheilinus celebecusLabridae36208Celebes WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus bilaceLabridae36293WrasseParacheilinus bellaeLabridae36294WrassePolylepion russelliLabridae36244Striated WrassePseudocheilinops ataeniaLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus nototaeniaLabridae362456 Line WrassePseudocheilinus perionLabridae362455 Line WrassePseudocheilinus perionLabridae362468 Line WrassePseudocheilinus perionLabridae362455 Line WrassePseudocheilinus perionLabridae362468 Line WrassePseudocheilinus perionLabridae362456 Line WrassePseudocheilinus perionLabridae362468 Line WrassePseudocheilinus perionLabridae362468 Line WrassePseudocheilinus perionLabridae36246	36239	Wedge-Tailed Wrasse	Labropsis xanthonota	Labridae
36284Negros WrasseMacropharyngodon negrosensisLabridae36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae36207Arenatus WrasseOxycheilinus arenatusLabridae36208Celebes WrasseOxycheilinus celebecusLabridae36203Bandcheek WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36292WrasseParacheilinus bellaeLabridae36265WrasseParacheilinus sp.Labridae36294WrassePseudocheilinus sp.Labridae36244Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus nototaeniaLabridae362468 Line WrassePseudocheilinus sp.Labridae362456 Line WrassePseudocheilinus sp.Labridae362468 Line WrassePseudocheilinus sp.Labridae<	36240	Leopard Wrasse	Macropharyngodon	Labridae
negrosensis36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae36207Arenatus WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus bimaculatusLabridae36208Celebes WrasseOxycheilinus celebecusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus orientalisLabridae36293WrasseParacheilinus sp.Labridae36265WrassePolylepion russelliLabridae36294WrassePseudocheilinus evanidusLabridae36244Striated WrassePseudocheilinus hexataeniaLabridae362456 Line WrassePseudocheilinus nevanidusLabridae362468 Line WrassePseudocheilinus orientalisLabridae362456 Line WrassePseudocheilinus pp.Labridae362453 Line WrassePseudocheilinus provintusLabridae362453 Line WrassePseudocheilinus pp.Labridae362453 Line WrassePseudocheilinus pp.Labridae362463 Line WrassePseudocheilinus pp.Labridae362453 Line WrassePseudocheilinus pp.Labridae362453 Line WrassePseudocheilinus pp.Labridae362463 Line WrassePseudocheilinus pp.Labridae362463 Line WrassePseudocheilinus			~	
36241Seagrass RazorfishNovaculichthys macrolepidotusLabridae36242Dragon WrasseNovaculichthys taeniourusLabridae36207Arenatus WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus bimaculatusLabridae36208Celebes WrasseOxycheilinus celebecusLabridae36263Bandcheek WrasseOxycheilinus orientalisLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36292WrasseOxycheilinus unifasciatusLabridae36293WrasseParacheilinus sp.Labridae36294WrassePseudocheilinops ataeniaLabridae362456 Line WrassePseudocheilinus evanidusLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36245Line WrassePseudocheilinus sp.Labridae36245Line WrassePseudocheilinus sp.Labridae36245Line WrassePseudocheilinus sp.Labridae36245Line WrassePseudocheilinus sp.Labridae36245Line WrassePseudocheilinus sp.Labridae362468 Line WrassePseudocheilinus sp.Labridae36245Line WrassePseudocheilinus sp.Labridae362468 Line WrassePseudocheilinus sp.Labridae36245Line WrassePseudocheilinus sp.Labridae	36284	Negros Wrasse		Labridae
accolepidotusmacrolepidotus36242Dragon WrasseNovaculichthys taeniourusLabridae36207Arenatus WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus bimaculatusLabridae36208Celebes WrasseOxycheilinus celebecusLabridae36263Bandcheek WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus unifasciatusLabridae36293WrasseParacheilinus bellaeLabridae36265WrassePolylepion russelliLabridae36244Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus spLabridae36285Line WrassePseudocheilinus spLabridae	26241	Saagraag Dagarfish	~	Labridaa
36242Dragon WrasseNovaculichthys taeniourusLabridae36207Arenatus WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus bimaculatusLabridae36208Celebes WrasseOxycheilinus celebecusLabridae36263Bandcheek WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus unifasciatusLabridae36293WrasseParacheilinus sp.Labridae36265WrassePolylepion russelliLabridae36244Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus orientalisLabridae362451 Line WrassePseudocheilinus sp.Labridae362455 Line WrassePseudocheilinus sp.Labridae362455 Line WrassePseudocheilinus sp.Labridae362456 Line WrassePseudocheilinus sp.Labridae362456 Line WrassePseudocheilinus sp.Labridae362468 Line WrassePseudocheilinus sp.Labridae36285Line WrassePseudocheilinus sp.Labridae	30241	Seagrass Razorrish	•	Laundae
36207Arenatus WrasseOxycheilinus arenatusLabridae362642-Spot WrasseOxycheilinus bimaculatusLabridae36208Celebes WrasseOxycheilinus celebecusLabridae36263Bandcheek WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus unifasciatusLabridae36292WrasseParacheilinus bellaeLabridae36265WrasseParacheilinus sp.Labridae36294WrassePolylepion russelliLabridae36244Striated WrassePseudocheilinus hexataeniaLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus sp.Labridae362451 Line WrassePseudocheilinus perionLabridae362455 Line WrassePseudocheilinus perionLabridae362456 Line WrassePseudocheilinus perionLabridae362458 Line WrassePseudocheilinus perionLabridae362468 Line WrassePseudocheilinus perionLabridae362451 Line WrassePseudocheilinus perionLabridae	36242	Dragon Wrasse	· · · · · · · · · · · · · · · · · · ·	Labridae
362642-Spot WrasseOxycheilinus bimaculatusLabridae36208Celebes WrasseOxycheilinus celebecusLabridae36263Bandcheek WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus unifasciatusLabridae36292WrasseParacheilinus bellaeLabridae36265WrasseParacheilinus sp.Labridae36294WrassePolylepion russelliLabridae36244Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus spLabridae	36207			Labridae
36208Celebes WrasseOxycheilinus celebecusLabridae36263Bandcheek WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus unifasciatusLabridae36292WrasseParacheilinus bellaeLabridae36265WrasseParacheilinus sp.Labridae36265WrassePolylepion russelliLabridae36294WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus spLabridae	36264	2-Spot Wrasse	*	Labridae
36263Bandcheek WrasseOxycheilinus digrammusLabridae36215Oriental WrasseOxycheilinus orientalisLabridae36212Ringtail WrasseOxycheilinus unifasciatusLabridae36292WrasseParacheilinus bellaeLabridae36293WrasseParacheilinus sp.Labridae36265WrassePolylepion russelliLabridae36294WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus sp.Labridae	36208		-	Labridae
36212Ringtail WrasseOxycheilinus unifasciatusLabridae36292WrasseParacheilinus bellaeLabridae36293WrasseParacheilinus sp.Labridae36265WrassePolylepion russelliLabridae36294WrassePseudocheilinops ataeniaLabridae36244Striated WrassePseudocheilinus hexataeniaLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus sp.Labridae	36263	Bandcheek Wrasse		Labridae
36292WrasseParacheilinus bellaeLabridae36293WrasseParacheilinus sp.Labridae36265WrassePolylepion russelliLabridae36294WrassePseudocheilinops ataeniaLabridae36244Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus sp.Labridae	36215	Oriental Wrasse	Oxycheilinus orientalis	Labridae
36293WrasseParacheilinus sp.Labridae36265WrassePolylepion russelliLabridae36294WrassePseudocheilinops ataeniaLabridae36244Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus spLabridae	36212	Ringtail Wrasse	Oxycheilinus unifasciatus	Labridae
36265WrassePolylepion russelliLabridae36294WrassePseudocheilinops ataeniaLabridae36244Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus spLabridae	36292	Wrasse	Paracheilinus bellae	Labridae
36294WrassePseudocheilinops ataeniaLabridae36244Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus spLabridae	36293	Wrasse	Paracheilinus sp.	Labridae
36244Striated WrassePseudocheilinus evanidusLabridae362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus spLabridae	36265	Wrasse	Polylepion russelli	Labridae
362456 Line WrassePseudocheilinus hexataeniaLabridae362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus spLabridae	36294	Wrasse	Pseudocheilinops ataenia	Labridae
362468 Line WrassePseudocheilinus octotaeniaLabridae36285Line WrassePseudocheilinus spLabridae	36244	Striated Wrasse	Pseudocheilinus evanidus	Labridae
36285Line WrassePseudocheilinus spLabridae	36245	6 Line Wrasse	Pseudocheilinus hexataenia	Labridae
	36246	8 Line Wrasse	Pseudocheilinus octotaenia	Labridae
362474 Line WrassePseudocheilinus tetrataeniaLabridae	36285	Line Wrasse	Pseudocheilinus sp	Labridae
	36247	4 Line Wrasse	Pseudocheilinus tetrataenia	Labridae

36316	Rust-Banded Wrasse	Pseudocoris aurantiofasciata	Labridae
36317	Torpedo Wrasse	Pseudocoris heteroptera	Labridae
36286	Yamashiro'S Wrasse	Pseudocoris yamashiroi	Labridae
36267	Chiseltooth Wrasse	Pseudodax moluccanus	Labridae
36248	Polynesian Wrasse	Pseudojuloides atavai	Labridae
36249	Smalltail Wrasse	Pseudojuloides cerasinus	Labridae
36250	Wrasse	Pterogogus cryptus	Labridae
36296	Wrasse	Pterogogus guttatus	Labridae
36251	Red-Shoulder Wrasse	Stethojulis bandanensis	Labridae
36252	Wrasse	Stethojulis strigiventor	Labridae
36299	Wrasse	Stethojulis trilineata	Labridae
36253	2 Tone Wrasse	Thalassoma amblycephalum	Labridae
36255	6 Bar Wrasse	Thalassoma hardwickii	Labridae
36262	Jansen'S Wrasse	Thalassoma janseni	Labridae
36287	Crescent Wrasse	Thalassoma lunare	Labridae
36256	Sunset Wrasse	Thalassoma lutescens	Labridae
36257	Surge Wrasse	Thalassoma purpureum	Labridae
36258	5-Stripe Surge Wrasse	Thalassoma quinquevittatum	Labridae
36254	Xmas Wrasse	Thalassoma trilobatum	Labridae
36289	Wh-Barred Pygmy Wrasse	Wetmorella albofasciata	Labridae
36259	Bl-Spot Pygmy Wrasse	Wetmorella nigropinnata	Labridae
36290	Wrasse	Xiphocheilus sp.	Labridae
36261	Yblotch Razorfish	Xyrichtys aneitensis	Labridae
36301	Celebe'S Razorfish	Xyrichtys celebecus	Labridae
36302	Razorfish	Xyrichtys geisha	Labridae
36308	Yellowpatch Razorfish	Xyrichtys melanopus	Labridae
36260	Blue Razorfish	Xyrichtys pavo	Labridae
36401	Bumphead parrotfish	Bolbometopon muricatum	Labridae
36214	Napolean wrasse	Cheilius undulatus	Labridae
1101	Carcharhinidae	Carcharhinus albimarginatus	Carcharhinidae
1102	Carcharhinidae	Carcharhinus amblyrhynchos	Carcharhinidae
1104	Carcharhinidae	Carcharhinus galapagensis	Carcharhinidae
1106	Carcharhinidae	Carcharhinus melanopterus	Carcharhinidae
1201	Hammerhead	Sphyrna lewini	Carcharhinidae
1202	Hammerhead	Sphyrna mokorran	Carcharhinidae
1200	Hammerhead	Sphyrnidae	Carcharhinidae
44518	Starry Triggerfish	Abalistes stellatus	Other

	•	leucogaster	
35052	White-Belly Damsel	Amblygliphidodon	Other
35006	Staghorn Damsel	Amblygliphidodon curacao	Other
35005	Damselfish	Amblygliphidodon aureus	Other
4307	Spotted Pilchard	Amblygaster sirm	Other
4306	Blue Pilchard	Amblygaster clupeoides	Other
40507	Bluespotted Goby	Amblyeleotris wheeleri	Other
40505	Brown-Barred Goby	Amblyeleotris steinitzi	Other
40506	Goby	Amblyeleotris randalli	Other
40503	Goby	Amblyeleotris guttata	Other
40502	Goby	Amblyeleotris fontaseni	Other
40501	Goby	Amblyeleotris faciata	Other
35201	2-Spot Hawkfish	Amblycirrhitus bimacula	Other
28702	Glassie	Ambassis interrupta	Other
28701	Glassie	Ambassis buruensis	Other
28700	Glass Perch	Ambassidae	Other
44552	Filefish	Amanses scopas	Other
44551	Filefish	Aluterus scriptus	Other
44558	Unicorn Filefish	Aluterus monoceros	Other
39202	Blenny	Alticus arnoldorum	Other
40711	Dorothea'S Wriggler	Allomicrodesmis dorotheae	Other
17101	Lancetfish	Alepisaurus ferox	Other
17100	Lancetfishes	Alepisauidae	Other
4800	Bonefish	Albulidae	Other
4802	Bonefish	Albula neoguinaica	Other
4801	Indo-Pacific Bonefish	Albula glossodonta	Other
2202	Eagle Ray	Aetomyleaus maculatus	Other
2201	Spotted Eagle Ray	Aetobatis narinari	Other
25601	Shrimpfish	Aeoliscus strigatus	Other
44566	Seagrass Filefish	Acreichthys tomentosus	Other
40537	Goby	Acentrogobius bonti	Other
29150	Hiatt'S Basslet	Acathoplesiops hiatti	Other
29150	Spiney Basslets	Acanthoclinidae	Other
35003	Sergeant-Major	Abudefduf vaigiensis	Other
35002	Black Spot Sergeant	Abudefduf sordidus	Other
35002	Scis-Tail Sgt Major	Abudefduf sexfasciatus	Other
35001	Banded Sergeant	Abudefduf septemfasciatus	Other
35050	Yellowtail Sergeant	Abudefduf notatus	Other
20701 35050	Barred NeedlefishBlackspot Sergeant	Ablennes hians Abudefduf lorenzi	Other

35053	Ternate Damsel	Amblygliphidodon ternatensis	Other
40523	Goby	Amblygobius decussatus	Other
40524	Goby	Amblygobius hectori	Other
40670		Amblygobius linki	Other
40525	Goby	Amblygobius nocturnus	Other
40526	Goby	Amblygobius phalaena	Other
40527	Goby	Amblygobius rainfordi	Other
40662	Goby	Amblygobius sp	Other
44816	Evileye Puffer	Amblyrhinchotus honckenii	Other
40504	Prawn Goby	Amlbyeleotris periophthalma	Other
35007	Org-Fin Anemonefish	Amphiprion chrysopterus	Other
35008	Clark'S Anemonefish	Amphiprion clarkii	Other
35095	Tomato Anemonefish	Amphiprion Crankti Amphiprion frenatus	Other
35009	Dusky Anemonefish	Amphiprion melanopus	Other
35096	False Clown Anemonefish	Amphiprion ocellaris	Other
35010	Pink Anemonfish	Amphiprion peridaeraion	Other
35097	3-Banded Anemonefish	Amphiprion tricinctus	Other
43507	Dragonet	Anaora tentaculata	Other
5601	Allardice'S Moray	Anarchias allardicei	Other
5646	Canton Island Moray	Anarchias cantonensis	Other
5602	Seychelles Moray	Anarchias seychellensis	Other
4901	Freshwater Eel	Anguilla bicolor	Other
4902	Freshwater Eel	Anguilla marmorata	Other
4900	Freshwater Eel	Anguillidae	Other
24250	Flashlightfish	Anomalopidae	Other
24251	Flashlightfish	Anomalops katoptron	Other
19200	Anglerfish	Antenariidae	Other
19201	Pigmy Frogfish	Antennarius analis	Other
19202	Frogfish	Antennarius biocellatus	Other
19203	Freckled Frogfish	Antennarius coccineus	Other
19204	Giant Frogfish	Antennarius commersonii	Other
19205	Bandtail Frogfish	Antennarius dorehensis	Other
19206	Sargassumfish	Antennarius maculatus	Other
19207	Spotfin Frogfish	Antennarius nummifer	Other
19208	Painted Frogfish	Antennarius pictus	Other
19209	Randall'S Frogfish	Antennarius randalli	Other
19210	Spiney-Tufted Frogfish	Antennarius rosaceus	Other
19211	Bandfin Frogfish	Antennatus tuberosus	Other

25201	Boarfish	Antigonia malayana	Other
26460	Velvetfishes	Aploactinidae	Other
30435	Cardinalfish	Apogon amboinensis	Other
30401	Broad-Striped Cardinalfish	Apogon angustatus	Other
30402	Bigeye Cardinalfish	Apogon bandanensis	Other
30403	Cryptic Cardinalfish	Apogon coccineus	Other
30436	Ohcre-Striped Cardinalfish	Apogon compressus	Other
30437	Redspot Cardinalfish	Apogon dispar	Other
30438	Longspine Cardinalfish	Apogon doryssa	Other
30455	Elliot'S Cardinalfish	Apogon ellioiti	Other
30462	Cardinalfish	Apogon eremeia	Other
30439	Evermann'S Cardinalfish	Apogon evermanni	Other
30404	Eyeshadow Cardinalfish	Apogon exostigma	Other
30405	Bridled Cardinalfish	Apogon fraenatus	Other
30441	Cardinalfish	Apogon fragilis	Other
30440	Gilbert'S Cardinalfish	Apogon gilberti	Other
30406	Guam Cardinalfish	Apogon guamensis	Other
30468		Apogon hartzfeldii	Other
30407	Iridescent Cardinalfish	Apogon kallopterus	Other
30408	Inshore Cardinalfish	Apogon lateralis	Other
30409	Bluestreak Cardinalfish	Apogon leptacanthus	Other
30457	Black Cardinalfish	Apogon melas	Other
30463	Cardinalfish	Apogon nigripinnis	Other
30412	Black-Striped Cardinalfish	Apogon nigrofasciatus	Other
30464	Cardinalfish	Apogon notatus	Other
30413	7-Lined Cardinalfish	Apogon novemfasciatus	Other
30442	Pearly Cardinalfish	Apogon perlitus	Other
30465	Cardinalfish	Apogon rhodopterus	Other
30443	Sangi Cardinalfish	Apogon sangiensis	Other
30415	Gray Cardinalfish	Apogon savayensis	Other
30456	Seale'S Cardinalfish	Apogon sealei	Other
30417	Cardinalfish	Apogon sp	Other
30414	Bandfin Cardinalfish	Apogon taeniophorus	Other
30410	Bandfin Cardinalfish	Apogon taeniopterus	Other
30416	3-Spot Cardinalfish	Apogon trimaculatus	Other
30418	Ocellated Cardinalfish	Apogonichthys ocellatus	Other
30444	Perdix Cardinalfish	Apogonichthys perdix	Other
30400	Cardinalfishes	Apogonidae	Other
34377	Angelfish	Apolemichthys griffisi	Other

34351	Flagfin Anglefish	Apolemichthys trimaculatus	Other
34376	Angelfish	Apolemichthys xanthopunctatus	Other
29201	2-Lined Soapfish	Aporops bilinearis	Other
6619	Snake Eel	Apterichtus klazingai	Other
30419	Twinspot Cardinalfish	Archamia biguttata	Other
30420	Orange-Lined Cardinalfish	Archamia fucata	Other
30445	Blackbelted Cardinalfish	Archamia zosterophora	Other
6206	Scheele'S Conger	Ariosoma scheelei	Other
43903	Flounder	Arnoglossus intermedius	Other
44801	Brown Puffer	Arothron hispidus	Other
44802	Puffer	Arothron manilensis	Other
44803	Puffer	Arothron mappa	Other
44804	White-Spot Puffer	Arothron meleagris	Other
44805	Black-Spotted Puffer	Arothron nigropunctatus	Other
44806	Star Puffer	Arothron stellatus	Other
44102	Black Spotted Sole	Aseraggodes melanostictus	Other
44103	Smith'S Sole	Aseraggodes smithi	Other
44104	Whitaker'S Sole	Aseraggodes whitakeri	Other
39257	Lance Blenny	Aspidontus dussumieri	Other
39203	Cleaner Mimic	Aspidontus taeniatus	Other
40539		Asteropteryx semipunctatus	Other
43905	Intermediate Flounder	Asterorhombus intermedius	Other
40538	Goby	Asterropteryx ensiferus	Other
21800	Silverside	Atherinidae	Other
21805	Tropical Silverside	Atherinomorus	Other
21006		duodecimalis	0.1
21806	Striped Silverside	Atherinomorus endrachtensis	Other
21803	Silverside	Atherinomorus lacunosus	Other
21804	Hardyhead Silverside	Atherinomorus lacunosus	Other
21801	Bearded Silverside	Atherion elymus	Other
39240	Blenny	Atrosalarius fuscus	Other
		holomelas	
25300	Trumpetfish	Aulostomidae	Other
25301	Trumpetfish	Aulostomus chinensis	Other
40540	Goby	Austrolethops wardi	Other
40541	Goby	Awaous grammepomus	Other
40542	Goby	Awaous guamensis	Other
44501	Undulate Triggerfish	Balistapus undulatus	Other

44500	Triggerfishes	Balistidae	Other
44502	Clown Triggerfish	Balistoides conspicillum	Other
44503	Titan Triggerfish	Balistoides viridescens	Other
40543	Goby	Bathygobius cocosensis	Other
40544	Goby	Bathygobius cotticeps	Other
40545	Goby	Bathygobius fuscus	Other
20700	Needlefish	Belonidae	Other
29001	Soapfish	Belonoperca chaubanaudi	Other
24200	Lantern-Eye Fish	Berycidae	Other
24201	Flashlightfish	Beryx decadactylus	Other
25818	Pipefish	Bhanotia nuda	Other
6205	Conger Eel	Blachea xenobranchialis	Other
39218	Blenny	Blenniella cyanostigma	Other
39222	Blenny	Blenniella gibbifrons	Other
39239		Blenniella paula	Other
39221	Blenny	Blenniella periophthalmus	Other
39200	Blennies	Blenniidae	Other
43900	Flounders	Bothidae	Other
43901	Peacock Flounder	Bothus mancus	Other
43902	Leopard Flounder	Bothus pantherinus	Other
44559	Taylor'S Inflator Filefish	Brachaluteres taylori	Other
6601	Snake Eel	Brachysomophis sauropsis	Other
18201	Codlet	Bregmaceros nectabanus	Other
18200	Codlets	Bregmacerotidae	Other
18651	Free-Tailed Brotula	Brosmophyciops pautzkei	Other
18601	Reef Cusk Eel	Brotula multibarbata	Other
18602	Townsend'S Cusk Eel	Brotula townsendi	Other
40546	Goby	Bryaninops amplus	Other
40547	Goby	Bryaninops erythrops	Other
40548	Goby	Bryaninops natans	Other
40549	Goby	Bryaninops ridens	Other
40550	Goby	Bryaninops youngei	Other
25819	Pipefish	Bulbonaricus brauni	Other
40402	Gudgeon	Butis amboinensis	Other
18650	Livebearing Brotulas	Bythitidae	Other
40551	Goby	Cabillus tongarevae	Other
6602	Snake Eel	Caecula polyophthalma	Other
32351	Scissor-Tailed Fusilier	Caesio caerulaurea	Other
32355	Fusilier	Caesio cuning	Other

32356	Lunar Fusilier	Caesio lunaris	Other
32352	Yellowback Caesio	Caesio teres	Other
32350	Fusilier	Caesionidae	Other
29050	Goldies	Callanthiidae	Other
6603	Snake Eel	Callechelys marmorata	Other
6604	Snake Eel	Callechelys melanotaenia	Other
43500	Dragonets	Callionymidae	Other
43508	Delicate Dragonet	Callionymus delicatulus	Other
43501	Mangrove Dragonet	Callionymus enneactis	Other
43502	Simple-Spined Dragonet	Callionymus simplicicornis	Other
40559	Goby	Callogobious sp	Other
40552	Goby	Callogobius bauchotae	Other
40553	Goby	Callogobius centrolepis	Other
40554	Goby	Callogobius hasselti	Other
40555	Goby	Callogobius maculipinnis	Other
40556	Goby	Callogobius okinawae	Other
40557	Goby	Callogobius plumatus	Other
40558	Goby	Callogobius sclateri	Other
29401	Longfin	Calloplesiops altivelis	Other
40403	Sleeper	Calumia godeffroyi	Other
44553	Gray Leatherjacket	Cantherhines dumerilii	Other
44565	Specktacled Filefish	Cantherhines fronticinctus	Other
44554	Honeycomb Filefish	Cantherhines pardalis	Other
44504	Rough Triggerfish	Canthidermis maculatus	Other
44807	Puffer	Canthigaster amboinensis	Other
44808	Puffer	Canthigaster bennetti	Other
44815	Puffer	Canthigaster compressa	Other
44809	Sharp Back Puffer	Canthigaster coronata	Other
44810	Puffer	Canthigaster epilampra	Other
44811	Puffer	Canthigaster janthinoptera	Other
44812	Puffer	Canthigaster leoparda	Other
44819	Circle-Barred Toby	Canthigaster ocellicincta	Other
44820	Papuan Toby	Canthigaster papua	Other
44813	Sharpnose Puffer	Canthigaster solandri	Other
44814	Saddle Shpns Puffer	Canthigaster valentini	Other
25200	Boarfishes	Caproidae	Other
26700	Coral Crouchers	Caracanthidae	Other
26701	Velvetfish	Caracanthus maculatus	Other
26702	Velvetfish	Caracanthus unipinna	Other

18700	Pearlfish	Carapodidae	Other
18702	Pearlfish	Carapus mourlani	Other
1109	Blackfin Shark	Carcharhinus limbatus	Other
902	Great White Shark	Carcharodon carcharius	Other
25600	Shrimpfishes	Centriscidae	Other
34379	Golden Angelfish	Centropyge aurantia	Other
34352	Bicolor Angelfish	Centropyge bicolor	Other
34353	Dusky Angelfish	Centropyge bispinosus	Other
34354	Colin'S Angelfish	Centropyge colini	Other
34367	White-Tail Angelfish	Centropyge flavicauda	Other
34355	Lemonpeel Anglefish	Centropyge flavissimus	Other
34356	Herald'S Anglefish	Centropyge heraldi	Other
34357	Flame Anglefish	Centropyge loriculus	Other
34368	Multicolor Angelfish	Centropyge multicolor	Other
34358	Multibarred Angelfish	Centropyge multifasciatus	Other
34359	Black-Spot Anglefish	Centropyge nigriocellus	Other
34378	Midnight Angelfish	Centropyge nox	Other
34360	Shepard'S Anglefish	Centropyge shepardi	Other
34369	Keyhole Angelfish	Centropyge tibicen	Other
34361	Pearlscale Anglefish	Centropyge vrolicki	Other
28959	Grouper	Cephalopholis cyanostigma	Other
39008	Triplefin	Ceratobregma helenae	Other
34301	Threadfin Butterflyfish	Chaetodon auriga	Other
34330	E Triangular Butterflyfish	Chaetodon barronessa	Other
34302	Bennetts Butterflyfish	Chaetodon bennetti	Other
34331	Burgess' Butterflyfish	Chaetodon burgessi	Other
34303	Speckled Butterflyfish	Chaetodon citrinellus	Other
34304	Saddleback Butterflyfish	Chaetodon ephippium	Other
34305	Ylw-Crn Butterflyfish	Chaetodon flavocoronatus	Other
34306	Kleins Butterflyfish	Chaetodon kleinii	Other
34307	Lined Butterflyfish	Chaetodon lineolatus	Other
34308	Racoon Butterflyfish	Chaetodon lunula	Other
34316	Redfinned Butterflyfish	Chaetodon lunulatus	Other
34309	Black-Back Butterflyfish	Chaetodon melannotus	Other
34310	Mertens Butterflyfish	Chaetodon mertensii	Other
34332	Meyer'S Butterflyfish	Chaetodon meyeri	Other
34311	Butterflyfish	Chaetodon modestus	Other
34333	Spot-Tail Butterflyfish	Chaetodon ocellicaudus	Other
34334	8-Banded Butterflyfish	Chaetodon octofasciatus	Other

34312	Ornate Butterflyfish	Chaetodon ornatissimus	Other
34335	Spot-Nape Butterflyfish	Chaetodon oxycephalus	Other
34313	Spotbnded Butterflyfish	Chaetodon punctatofasciatus	Other
34314	4-Spotted Butterflyfish	Chaetodon quadrimaculatus	Other
34336	Latticed Butterflyfish	Chaetodon rafflesii	Other
34315	Retculted Butterflyfish	Chaetodon reticulatus	Other
34337	Dotted Butterflyfish	Chaetodon semeion	Other
34338	Oval-Spot Butterflyfish	Chaetodon speculum	Other
34340	Tinker'S Butterflyfish	Chaetodon tinkeri	Other
34329	Chevron Butterflyfish	Chaetodon trifascialis	Other
34317	Pac Dblsddl Butterflyfish	Chaetodon ulietensis	Other
34318	Teardrop Butterflyfish	Chaetodon unimaculatus	Other
34319	Vagabond Butterflyfish	Chaetodon vagabundus	Other
34300	Butterflyfish	Chaetodontidae	Other
34370	Vermiculated Angelfish	Chaetodontoplus mesoleucus	Other
37401	Saddled Sandburrower	Chalixodytes tauensis	Other
36701	Gaper	Champsodon vorax	Other
36700	Gapers	Champsodontidae	Other
9800	Milkfish	Chanidae	Other
5647	Long-Jawed Moray	Channomuraena vittata	Other
9801	Milkfish	Chanos chanos	Other
30458	Lined Cardinalfish	Cheilodipterus artus	Other
30466	Intermediate Cardinalfish	Cheilodipterus intermedius	Other
30446	Cardinalfish	Cheilodipterus isostigma	Other
30422	Lg-Toothed Cardinalfish	Cheilodipterus macrodon	Other
30423	5-Lined Cardinalfish	Cheilodipterus quinquelineata	Other
30421	Truncate Cardinalfish	Cheilodipterus singapurensis	Other
20601	Flying Fish	Cheilopogon spilonopterus	Other
20602	Flying Fish	Cheilopogon spilopterus	Other
20603	Flying Fish	Cheilopogon unicolor	Other
35089	Minstrel Fish	Cheiloprion labiatus	Other
35907	Ceram Mullet	Chelon macrolepis	Other
5400	False Moray Eel	Chlopsidae	Other
25802	Pipefish	Choeroichthys brachysoma	Other
25801	Pipefish	Choeroichthys sculptus	Other
37001	Duckbill	Chrionema squamiceps	Other

35011	Midget Chromis	Chromis acares	Other
35012	Bronze Reef Chromis	Chromis agilis	Other
35022	Yel-Speckled Chromis	Chromis alpha	Other
35013	Ambon Chromis	Chromis amboinensis	Other
35014	Yellow Chromis	Chromis analis	Other
35015	Black-Axil Chromis	Chromis atripectoralis	Other
35054	Dark-Fin Chromis	Chromis atripes	Other
35059	Blue-Axil Chromis	Chromis caudalis	Other
35060	Deep Reef Chromis	Chromis delta	Other
35017	Twin-Spot Chromis	Chromis elerae	Other
35018	Scaly Chromis	Chromis lepidolepis	Other
35055	Lined Chromis	Chromis lineata	Other
35019	Bicolor Chromis	Chromis margaritifer	Other
35056	Black-Bar Chromis	Chromis retrofasciata	Other
35049	Ternate Chromis	Chromis ternatensis	Other
35020	Vanderbilt'S Chromis	Chromis vanderbilti	Other
35016	Blue-Green Chromis	Chromis viridis	Other
35057	Weber'S Chromis	Chromis weberi	Other
35058	Yel-Axil Chromis	Chromis xanthochir	Other
35021	Black Chromis	Chromis xanthura	Other
35024	2-Spot Demoiselle	Chrysiptera biocellata	Other
35027	Surge Demoiselle	Chrysiptera brownriggii	Other
35025	Blue-Line Demoiselle	Chrysiptera caeruleolineata	Other
35062	Blue Devil	Chrysiptera cyanea	Other
35026	Gray Demoiselle	Chrysiptera glauca	Other
35090	Blue-Spot Demoiselle	Chrysiptera oxycephala	Other
35064	King Demoiselle	Chrysiptera rex	Other
35065	Talbot'S Demoiselle	Chrysiptera talboti	Other
35028	Tracey'S Demoiselle	Chrysiptera traceyi	Other
35091	1-Spot Demoiselle	Chrysiptera unimaculata	Other
34610	Peacock Bass	Cichla ocellaris	Other
34600	Cichlids	Cichlidae	Other
35211	Threadfin Hawkfish	Cirrhitichthys aprinus	Other
35202	Falco'S Hawkfish	Cirrhitichthys falco	Other
35203	Pixy Hawkfish	Cirrhitichthys oxycephalus	Other
35200	Hawkfish	Cirrhitidae	Other
35204	Stocky Hawkfish	Cirrhitus pinnulatus	Other
6620	Fringelip Snake Eel	Cirricaecula johnsoni	Other
39242	Chestnut Blenny	Cirripectes castaneus	Other

39204	Spotted Blenny	Cirripectes fuscoguttatus	Other
39243	Blenny	Cirripectes perustus	Other
39206	Barred Blenny	Cirripectes polyzona	Other
39205	Squiggly Blenny	Cirripectes quagga	Other
39244	Red-Streaked Blenny	Cirripectes stigmaticus	Other
39207	Red-Speckled Blenny	Cirripectes variolosus	Other
14802	Air-Breath Catfish	Clarias batrachus	Other
14801	Air-Breath Catfish	Clarias macrocephalus	Other
14800	Air-Breath Catfish	Clariidae	Other
4300	Herring,Sprat,Sardines	Clupeidae	Other
26461	Velvetfish	Cocotropis larvatus	Other
6201	White Eel	Conger cinereus cinereus	Other
6202	Conger Eel	Conger oligoporus	Other
6208	Conger Eel	Conger sp	Other
6200	White,Conger,Garden Eel	Congridae	Other
30306	Deepwater Glasseye	Cookeolus boops	Other
30304	Bulleye	Cookeolus japonicus	Other
34339	Orangebanded Coralfish	Coradion chrysozonus	Other
40590	Goby	Coryphopterus signipinnis	Other
25803	Network Pipefish	Corythoichthys	Other
		flavofasciatus	
25820	Pipefish	Corythoichthys	Other
25004		haematopterus	0.1
25804	Reef Pipefish	Corythoichthys intestinalis	Other
25805	Bl-Breasted Pipefish	Corythoichthys nigripectus	Other
25821	Ocellated Pipefish	Corythoichthys ocellatus	Other
25822	Many-Spotted Pipefish	Corythoichthys polynotatus	Other
25823	Guilded Pipefish	Corythoichthys schultzi	Other
25824	Roughridge Pipefish	Cosmocampus banneri	Other
25806	D'Arros Pipefish	Cosmocampus darrosanus	Other
25825	Maxweber'S Pipefish	Cosmocampus maxweberi	Other
37400	Sand Burrowers	Creedidae	Other
35911	Mullet	Crenimugil heterochilos	Other
40560	Goby	Cristagobius sp	Other
40508	Goby	Cryptocentroides insignis	Other
40511	Goby	Cryptocentrus cauruleomaculatus	Other
40509	Goby	Cryptocentrus cinctus	Other
40510	Goby	Cryptocentrus koumansi	Other
40512	Goby	Cryptocentrus	Other

		leptocephalus	
40514	Goby	Cryptocentrus sp.A	Other
40513	Goby	Cryptocentrus strigilliceps	Other
40515	Goby	Ctenogobiops aurocingulus	Other
40516	Goby	Ctenogobiops feroculus	Other
40517	Goby	Ctenogobiops pomastictus	Other
40518	Long-Finned Prwn Goby	Ctenogobiops tangarorai	Other
27304	Flathead	Cymbacephalus beauforti	Other
35212	Swallowtail Hawkfish	Cyprinocirrhites polyactis	Other
20604	Flying Fish	Cypselurus angusticeps	Other
20605	Flying Fish	Cypselurus poecilopterus	Other
20606	Flying Fish	Cypselurus speculiger	Other
28501	Flying Gurnard	Dactyloptena orientalis	Other
28502	Flying Gurnard	Dactyloptena petersoni	Other
28500	Flying Gurnard	Dactylopteridae	Other
35029	Humbug Dascyllus	Dascyllus aruanus	Other
35066	Black-Tail Dascyllus	Dascyllus melanurus	Other
35030	Reticulated Dascyllus	Dascyllus reticulatus	Other
35031	3-Spot Dascyllus	Dascyllus trimaculatus	Other
2000	Stingray	Dasyatididae	Other
2001	Blue-Spotted Sting Ray	Dasyatis kuhlii	Other
26401	Scorpionfish	Dendrochirus biocellatus	Other
26402	Scorpionfish	Dendrochirus brachypterus	Other
26427	Zebra Lionfish	Dendrochirus zebra	Other
32701	Slatey Sweetlips	Diagramma pictum	Other
16701	Lanternfish	Diaphus schmidti	Other
18652	Bythitid	Dinematichthys	Other
		iluocoetenoides	
44903	Porcupinefish	Diodon eydouxi	Other
44901	Porcupinefish	Diodon hystrix	Other
44902	Porcupinefish	Diodon liturosus	Other
44900	Porcupinefish	Diodontidae	Other
43503	Dragonet	Diplogrammus goramensis	Other
8801	Bristlemouth	Diplophos sp	Other
35067	White-Spot Damsel	Dischistodus chrysopoecilus	Other
35068	Black-Vent Damsel	Dischistodus melanotus	Other
35032	White Damsel	Dischistodus perspicillatus	Other
25808	Banded Pipefish	Doryramphus	Other
25005		dactyliophorus	
25807	Bluestripe Pipefish	Doryramphus excisus	Other

25826	Janss' Pipefish	Doryramphus janssi	Other
25827	Negros Pipefish	Doryramphus negrosensis negrsensi	Other
4303	Sprat	Dussumieria elopsoides	Other
4302	Sprats	Dussumieria sp.B	Other
31300	Diskfishes	Echeneidae	Other
31304	Remora	Echeneis naucrates	Other
5603	Whiteface Moray	Echidna leucotaenia	Other
5604	Snowflake Moray	Echidna nebulosa	Other
5605	Girdled Moray Eel	Echidna polyzona	Other
5606	Unicolor Moray	Echidna unicolor	Other
1350	Bramble Shark	Echinorhinidae	Other
1351	Bramble Shark	Echinorhinus brucus	Other
1352	Bramble Shark	Echinorhinus cookei	Other
39264	Banda Clown Blenny	Ecsenius bandanus	Other
39208	Blenny	Ecsenius bicolor	Other
39209	Blenny	Ecsenius opsifrontalis	Other
39245	Blenny	Ecsenius sellifer	Other
39246	Blenny	Ecsenius yaeyamaensis	Other
6621	Snake Eel	Elapsopsis versicolor	Other
40400	Sleepers	Eleotrididae	Other
40401	Gudgeon	Eleotris fusca	Other
32201	Bonnetmouth	Emmelichthys karnellai	Other
32200	Bonnet Mouths	Emmelichtyidae	Other
18703	Pearlfish	Encheliophis boraboraensis	Other
18705	Pearlfish	Encheliophis gracilis	Other
18701	Pearlfish	Encheliophis homei	Other
18704	Pearlfish	Encheliophis vermicularis	Other
5607	Bayer'S Moray	Enchelycore bayeri	Other
5608	Bikini Atoll Moray	Enchelycore bikiniensis	Other
5655	Dark-Spotted Moray	Enchelycore kamara	Other
5609	White-Margined Moray	Enchelycore schismatorhynchus	Other
5610	Viper Moray	Enchelynassa canina	Other
39210	Blenny	Enchelyurus kraussi	Other
4406	Gold Anchovy	Enchrasicholina devisi	Other
4405	Blue Anchovy	Enchrasicholina devisi	Other
1105		heterolobus	
4401	Oceanic Anchovy	Enchrasicholina punctifer	Other
4400	Anchovies	Engraulidae	Other

43904	Flounder	Engyprosopon sp	Other
39001	Triplefin	Enneapterygius hemimelas	Other
39002	Triplefin	Enneapterygius minutus	Other
39003	Triplefin	Enneapterygius nanus	Other
39247	Blenny	Entomacrodus	Other
	-	caudofasciatus	
39248	Blenny	Entomacrodus cymatobiotus	Other
39211	Blenny	Entomacrodus decussatus	Other
39212	Blenny	Entomacrodus niuafooensis	Other
39213	Blenny	Entomacrodus sealei	Other
39241	Blenny	Entomacrodus stellifer	Other
39214	Blenny	Entomacrodus striatus	Other
39215	Blenny	Entomacrodus thalassinus	Other
		thalassin	
34000	Batfish	Ephippidae	Other
32202	Bonnetmouth	Erythrocles scintillans	Other
1301	Spiny Dogfish	Etmopterus pusillus	Other
20757	Ribbon Halfbeak	Euleptorhamphus viridis	Other
28601	Dragon Fish	Eurypegasus draconis	Other
4304	Mantis Shrimp	Eutremus teres	Other
40561	Kawakawa	Eviota afelei	Other
40562	Herring	Eviota albolineata	Other
40563	Goby	Eviota bifasciata	Other
40564	Goby	Eviota cometa	Other
40565	Goby	Eviota distigma	Other
40566	Goby	Eviota fasciola	Other
40567	Goby	Eviota herrei	Other
40568	Goby	Eviota infulata	Other
40569	Goby	Eviota lachdebrerei	Other
40570	Goby	Eviota latifasciata	Other
40571	Goby	Eviota melasma	Other
40572	Goby	Eviota nebulosa	Other
40573	Goby	Eviota pellucida	Other
40574	Goby	Eviota prasina	Other
40575	Goby	<i>Eviota prasites</i>	Other
40576	Goby	Eviota punctulata	Other
40577	Goby	Eviota queenslandica	Other
40579	Goby	Eviota saipanensis	Other
40578	Goby	Eviota sebreei	Other
40580	Goby	Eviota sigillata	Other

40581	Goby	Eviota smaragdus	Other
40585	Goby	Eviota sp	Other
40582	Goby	Eviota sparsa	Other
40583	Goby	Eviota storthynx	Other
40584	Goby	Eviota zonura	Other
6622	Snake Eel	Evipes percinctus	Other
39216	Blenny	Exalias brevis	Other
20600	Flying Fish	Exocoetidae	Other
20611	Flying Fish	Exocoetus volitans	Other
40586	Goby	Exyrias belissimus	Other
40587	Goby	Exyrias puntang	Other
25401	Cornetfish	Fistularia commersoni	Other
25400	Cornetfish	Fistulariidae	Other
30453	Bay Cardinalfish	Foa brachygramma	Other
30454	Cardinalfish	Foa sp	Other
34320	Longnosed Butterflyfish	Forcipiger flavissimus	Other
34321	Big Longnose Butterflyfish	Forcipiger longirostris	Other
30467	Cardinalfish	Fowleria abocellata	Other
30426	Marbled Cardinalfish	Fowleria marmorata	Other
30425	Spotcheek Cardinalfish	Fowleria punctulata	Other
30427	Variegated Cardinalfish	Fowleria variegatus	Other
40588	Goby	Fusigobius longispinus	Other
40589	Goby	Fusigobius neophytus	Other
1107	Tiger Shark	Galeocerdo cuvier	Other
31802	Lg-Toothed Ponyfish	Gazza achlamys	Other
31808	Toothed Ponyfish	Gazza minuta	Other
34362	Ornate Angelfish	Genicanthus bellus	Other
34371	Black-Spot Angelfish	Genicanthus melanospilos	Other
34364	Watanabe'S Angelfish	Genicanthus watanabei	Other
32600	Mojarras	Gerreidae	Other
32602	Deep-Bodied Mojarra	Gerres abbreviatus	Other
32601	Common Mojarra	Gerres acinaces	Other
32604	Filamentous Mojarra	Gerres filamentosus	Other
32603	Oblong Mojarra	Gerres oblongus	Other
32605	Oyena Mojarra	Gerres oyena	Other
32606	Mojarra	Gerres punctatus	Other
9200	Telescopefish	Giganturidae	Other
40591	Goby	Gladigobius ensifera	Other
40592	Goby	Glossogobius biocellatus	Other

40593	Goby	Glossogobius celebius	Other
40594	Goby	Glossogobius guirus	Other
39249	Blenny	Glyptoparus delicatulus	Other
40595	Goby	Gnatholepis anjerensis	Other
40601		Gnatholepis caurensis	Other
40596	Goby	Gnatholepis scapulostigma	Other
40597	Goby	Gnatholepis sp.A	Other
43400	Clingfish	Gobiesocidae	Other
40500	Goby	Gobiidae	Other
40598	Goby	Gobiodon albofasciatus	Other
40599	Goby	Gobiodon citrinus	Other
40602	Goby	Gobiodon okinawae	Other
40603	Goby	Gobiodon quinquestrigatus	Other
40604	Goby	Gobiodon rivulatus	Other
40605	Goby	Gobiopsis bravoi	Other
8802	Bristlemouth	Gonostoma atlanticum	Other
8803	Bristlemouth	Gonostoma ebelingi	Other
8800	Bristlemouths	Gonostomatidae	Other
6209	Orange-Barred Garden Eel	Gorgasia preclara	Other
6203	Conger Eel	Gorgasia sp	Other
29051	Goldies	Grammatonotus sp.1	Other
29052	Goldies	Grammatonotus sp.2	Other
41604	2-Lined Mackerel	Grammatorcynos bilineatus	Other
29002	Yellowstripe Soapfish	Grammistes sexlineatus	Other
29000	Soapfish	Grammistidae	Other
29003	Ocellate Soapfish	Grammistops ocellatus	Other
41001	Wormfish	Gunnellichthys monostigma	Other
41002	Onestripe Wormfish	Gunnellichthys pleurotaenia	Other
41011	Wormfish	Gunnellichthys viridescens	Other
30460	Philippine Cardinalfish	Gymnapogon philippinus	Other
30447	Cardinalfish	Gymnapogon urospilotus	Other
32361	Fusilier	Gymnocaesio gymnopterus	Other
5611	Zebra Moray	Gymnomuraena zebra	Other
5619	Moray Eel	<i>Gymnothorax berndti</i>	Other
5620	Buro Moray	Gymnothorax buroensis	Other
5624	Moray Eel	Gymnothorax elegans	Other
5635	Enigmatic Moray	<i>Gymnothorax enigmaticus</i>	Other
5621	Fimbriated Moray	<i>Gymnothorax fimbriatus</i>	Other
5622	Yellow-Margined Moray	Gymnothorax	Other
		flavimarginatus	

5612	Brown Spotted Moray	Gymnothorax fuscomaculatus	Other
5623	Graceful-Tailed Moray	<i>Gymnothorax gracilicaudus</i>	Other
5625	Moray Eel	<i>Gymnothorax hepaticus</i>	Other
5626	Giant Moray	<i>Gymnothorax javanicus</i>	Other
5627	Blotch-Necked Moray	Gymnothorax	Other
		margaritophorus	
5613	Marshall Isles Moray	Gymnothorax marshallensis	Other
5614	Dirty Yellow Moray	Gymnothorax melatremus	Other
5628	Whitemouth Moray	Gymnothorax meleagris	Other
5648	Monochrome Moray	Gymnothorax monochrous	Other
5629	1-Spot Moray	Gymnothorax monostigmus	Other
5630	Moray Eel	Gymnothorax neglectus	Other
5645	Yellowmouth Moray	Gymnothorax nudivomer	Other
5616	Pinda Moray	Gymnothorax pindae	Other
5649	Moray Eel	Gymnothorax polyuranodon	Other
5631	Richardson'S Moray	Gymnothorax richardsoni	Other
5632	Yellow-Headed Moray	Gymnothorax rueppelliae	Other
5618	Moray Eel	Gymnothorax sp.cf Melatremus	Other
5633	Undulated Moray	Gymnothorax undulatus	Other
5634	Zonipectis Moray	Gymnothorax zonipectus	Other
32700	Sweetlips	Haemulidae	Other
25811	Brock'S Pipefish	Halicampus brocki	Other
25828	Duncker'S Pipefish	Halicampus dunckeri	Other
25812	Samoan Pipefish	Halicampus mataafae	Other
25829	Glittering Pipefish	Halicampus nitidus	Other
44301	Spikefish	Halimochirurgus alcocki	Other
39004	Triplefin	Helcogramma capidata	Other
39005	Triplefin	Helcogramma chica	Other
39006	Triplefin	Helcogramma hudsoni	Other
35069	Damselfish	Hemiglyphidodon plagiometopon	Other
20751	Halfbeak	Hemiramphus archipelagicus	Other
20758	Halfbeak	Hemiramphus far	Other
20760	Halfbeak	Hemiramphus lutkei	Other
20750	Halfbeak	Hemirhamphidae	Other
34322	Pyrimid Butterflyfish	Hemitaurichthys polylepis	Other
34323	Butterflyfish	Hemitaurichthys thompsoni	Other
34324	Longfinned Bannerfish	Heniochus acuminatus	Other

34325	Pennant Bannerfish	Heniochus chrysostomus	Other
34341	Bannerfish	Heniochus diphreutes	Other
34326	Masked Bannerfish	Heniochus monoceros	Other
34327	Singular Butterflyfish	Heniochus singularis	Other
34328	Humphead Bannerfish	Heniochus varius	Other
4308	Gold Spot Herring	Herklotsichthys	Other
		quadrimaculatus	
6204	Conger Eel	Heteroconger hassi	Other
40606	Goby	Heteroeleotris sp	Other
30301	Glasseye	Heteropriacanthus	Other
2007	x /1 ·	cruentatus	
2006	Whipray	Himantura fai	Other
2005	Wh Tail Whipray	Himantura granulata	Other
2003	Leopard Ray	Himantura uarnak	Other
25830	Pipefish	Hippichthys cyanospilos	Other
25831	Pipefish	Hippichthys spicifer	Other
25809	Pipefish	Hippocampus histrix	Other
25832	Pipefish	Hippocampus kuda	Other
19212	Sargassum Fish	Histrio histrio	Other
28965	Fairy Basslet	Holanthias borbonius	Other
28966	Fairy Basslet	Holanthias katayamai	Other
30801	Tilefish	Hoplolatilus cuniculus	Other
30802	Tilefish	Hoplolatilus fronticinctus	Other
30803	Tilefish	Hoplolatilus starcki	Other
21807	Silverside	Hypoatherina barnesi	Other
21808	Silverside	Hypoatherina cylindrica	Other
21802	Silverside	Hypoatherina ovalaua	Other
20753	Halfbeak	Hyporhamphus acutus	Other
00754		acutus	
20754	Halfbeak	Hyporhamphus affinis	Other
20755	Halfbeak	Hyporhamphus dussumieri	Other
6623	Snake Eel	Ichthyapus vulturus	Other
26430	Spiny Devilfish	Inimicus didactylus	Other
21901	Keeled Silverside	Iso hawaiiensis	Other
35210	6-Band Hawkfish	Isocirrhitus sexfasciatus	Other
21900	Keeled Silversides	Isonidae	Other
39265	Beautiful Rockskipper	Istiblennius bellus	Other
39217	Blenny	Istiblennius chrysospilos	Other
39266	Streaky Rockskipper	Istiblennius dussumieri	Other
39219	Blenny	Istiblennius edentulus	Other

39267	Interrupted Rockskipper	Istiblennius interruptus	Other
39220	Blenny	Istiblennius lineatus	Other
40607	Goby	Istigobius decoratus	Other
40608	Goby	Istigobius ornatus	Other
40609	Goby	Istigobius rigilius	Other
40610	Goby	Istigobius spence	Other
41900	Billfishes	Istiophoridae	Other
901	Mackerel Shark	Isurus oxyrhinchus	Other
5402	Bl-Nostril False Moray	Kaupichthys atronasus	Other
5403	Shortfin False Moray	Kaupichthys brachychirus	Other
5401	Common False Moray	Kaupichthys hyoproroides	Other
40612	Goby	Kellogella quindecimfasciata	Other
40611	Goby	Kelloggella cardinalis	Other
40701	Sand Dart	Kraemeria bryani	Other
40702	Sand Dart	Kraemeria cunicularia	Other
40703	Sand Dart	Kraemeria samoensis	Other
40700	Sand Darts	Kraemeriidae	Other
30103	Dark-Margined Flagtail	Kuhlia marginata	Other
30101	Barred Flagtail	Kuhlia mugil	Other
30102	River Flagtail	Kuhlia rupestris	Other
30100	Flagtails	Kuhliidae	Other
44601	Longhorn Cowfish	Lactoria cornuta	Other
44602	Spiny Cowfish	Lactoria diaphana	Other
44605	Thornback Cowfish	Lactoria fornasini	Other
44817	Oceanic Blaasop	Lagocephalus lagocephalus	Other
44818	Silverstripe Blaasop	Lagocephalus sceleratus	Other
900			
6627	Oriental Snake Eel	Lamnostoma orientalis	Other
31800	Ponyfishes	Leiognathidae	Other
31806	Slipmouth	Leiognathus bindus	Other
31804	Slipmouth	Leiognathus elongatus	Other
31801	Common Slipmouth	Leiognathus equulus	Other
31805	Slipmouth	Leiognathus smithursti	Other
31803	Oblong Slipmouth	Leiognathus stercorarius	Other
6605	Saddled Snake Eel	Leiuranus semicinctus	Other
43401	Clingfish	Lepadichthys caritus	Other
43402	Clingfish	Lepadichthys minor	Other
35048	Fusilier Damsel	Lepidozygus tapienosoma	Other
16901	Barracudina	Lestidium nudun	Other

37402	Sand Burrower	Limnichthys donaldsoni	Other
43403	Clingfish	Liobranchia stria	Other
28991	Swissguard Basslet	Liopropoma lunulatum	Other
28997	Swissguard Basslet	Liopropoma maculatum	Other
28992	Swissguard Basslet	Liopropoma mitratum	Other
28993	Swissguard Basslet	Liopropoma multilineatum	Other
28994	Pallid Basslet	Liopropoma pallidum	Other
28995	Pinstripe Basslet	Liopropoma susumi	Other
28996	Redstripe Basslet	Liopropoma tonstrinum	Other
39251	Blenny	Litobranchus fowleri	Other
35908	Giantscale Mullet	Liza melinoptera	Other
32501	Triplefin	Lobotes surinamensis	Other
32500	Tripletails	Lobotidae	Other
40519	Goby	Lotilia graciliosa	Other
28981	Magenta Slender Basslet	Luzonichthys waitei	Other
28982	Whitley'S Slender Basslet	Luzonichthys whitleyi	Other
40613	Goby	Macrodontogobius wilburi	Other
40520	Goby	Mahidolia mystacina	Other
30800	Tilefishes	Malacanthidae	Other
30851	Quakerfish	Malacanthus brevirostris	Other
30852	Striped Blanquillo	Malacanthus latovittatus	Other
2301	Manta Ray	Manta birostris	Other
45001	Sharptail Sunfish	Masturus lanceolatus	Other
4700	Tarpons	Megalopidae	Other
4701	Indo-Pacific Tarpon	Megalops cyprinoides	Other
39233	Poison-Fang Blenny	Meiacanthus anema	Other
39223	Poison-Fang Blenny	Meiacanthus atrodorsalis	Other
39258	1-Stripe Poison-Fang Blenny	Meiacanthus ditrema	Other
39259	Striped Poison-Fang Blenny	Meiacanthus grammistes	Other
44505	Black Triggerfish	Melichthys niger	Other
44506	Pinktail Triggerfish	Melichthys vidua	Other
18653	Brotula	Microbrotula sp.	Other
41000	Wormfish	Microdesmidae	Other
25817	Anderson'S Shrt-Nosed Pipefish	Micrognathus andersonii	Other
25810	Pygmy Short-Nosed Pipefish	Micrognathus brevirostris pygmaeus	Other
25833	Pipefish	Microphis brachyurus brachyurus	Other

25834	Pipefish	Microphis brevidorsalis	Other
25835	Pipefish	Microphis leiaspis	Other
25836	Pipefish	Microphis manadensis	Other
25837	Pipefish	Microphis retzii	Other
25813	Ventricose Milda	Minyichthys myersi	Other
2300	Myer'S Pipefish	Mobulidae	Other
45000	Ocean Sunfishes	Molidae	Other
44550	Filefishes	Monacanthidae	Other
33300	Monos	Monodactylidae	Other
33301	Mono	Monodactylus argenteus	Other
18000	Codlings	Moridae	Other
5103	Rusty Spaghetti Eel	Moringua ferruginea	Other
5102	Java Spaghetti Eel	Moringua javanica	Other
5101	Spaghetti Eel	Moringua microchir	Other
5100	Worm Eel	Moringuidae	Other
40614	Goby	Mugilogobius tagala	Other
40615	Goby	Mugilogobius villa	Other
6300	Pike Eels	Muraenesocidae	Other
6301	Pike Conger	Muraenesox cinereus	Other
6612	Snake Eel	Muraenichthys gymnotus	Other
6606	Snake Eel	Muraenichthys laticaudata	Other
6607	Snake Eel	Muraenichthys macropterus	Other
6613	Snake Eel	Muraenichthys schultzi	Other
6614	Snake Eel	Muraenichthys sibogae	Other
5600	Morays	Muraenidae	Other
16700	Lanternfishes	Myctophidae	Other
16702	Laternfish	Myctophum brachygnathos	Other
2200	Eagle Ray	Myliobatidae	Other
6624	Snake Eel	Myrichthys bleekeri	Other
6608	Banded Snake Eel	Myrichthys colubrinus	Other
6610	Spotted Snake Eel	Myrichthys maculosus	Other
6615	Snake Eel	Myrophis uropterus	Other
200	Hagfish	Myxinidae	Other
201	Hagfish	Eptaptretus carlhubbsi	Other
39252	Combtooth Blenny	Nannosalarius nativitatus	Other
701	Nurse Shark	Nebrius ferrugineus	Other
1110	Lemon Shark	Negaprion acutidens	Other
41010	Decorated Dartfish	Nemateleotris decora	Other
41003	Helfrichs' Dartfish	Nemateleotris helfrichi	Other

41004	Fire Dartfish	Nemateleotris magnifica	Other
32400	Threadfin Breams	Nemipteridae	Other
32900	Breams	Nemipteridae	Other
32412	Forktail Bream	Nemipterus furcosus	Other
32409	Butterfly Bream	Nemipterus hexadon	Other
32410	Notched Butterfly Bream	Nemipterus peronii	Other
32411	Butterfly Bream	Nemipterus tolu	Other
35205	Flame Hawkfish	Neocirrhitus armatus	Other
35072	Royal Damsel	Neoglyphidodon melas	Other
35073	Yellowfin Damsel	Neoglyphidodon nigroris	Other
35070	Coral Demoiselle	Neopomacentrus nemurus	Other
35071	Freshwater Demoiselle	Neopomacentrus taeniurus	Other
35047	Violet Demoiselle	Neopomacentrus violascens	Other
42200	Man-Of-War Fish	Nomeidae	Other
39007	Triplefin	Norfolkia brachylepis	Other
44507	Redtooth Triggerfish	Odonus niger	Other
35909	Foldlip Mullet	Oedalechilus labiosus	Other
39263	Mangrove Blenny	Omobranchus obliquus	Other
39224	Blenny	Omobranchus rotundiceps	Other
39256	Blenny	Omox biporos	Other
18706	Bivalve Pearlfish	Onuxodon fowleri	Other
6600	Snake Eel	Ophichthidae	Other
6611	Dark-Shouldered Snake Eel	Ophichthus cephalozona	Other
18600	Cusk Eel	Ophidiidae	Other
40405	Sleeper	Ophieleotris aporos	Other
40406	Sleeper	Ophiocara porocephala	Other
36600	Jawfishes	Opisthognathidae	Other
36601	Variable Jawfish	<i>Opisthognathus</i> sp. A	Other
36602	Wass' Jawfish	<i>Opisthognathus</i> sp. B	Other
34700	Knifejaws	Oplegnathidae	Other
34701	Spotted Knifejaw	Oplegnathus punctatus	Other
40528	Goby	Oplopomops diacanthus	Other
40529	Goby	Oplopomus oplopomus	Other
40616	Goby	Opua nephodes	Other
700	Nurse,Zebra,Carpet Sharks	Orectolobidae	Other
34601	Tilapia	Oreochromis mossambicus	Other
44600	Boxfish, Cowfish	Ostraciidae	Other
44603	Cube Trunkfish	Ostracion cubicus	Other
44604	Spotted Trunkfish	Ostracion meleagris	Other
		meleagris	

44606	Reticulate Boxfish	Ostracion solorensis	Other
35206	Longnose Hawkfish	Oxycirrhitus typus	Other
40407	Sleeper	Oxyleotris lineolatus	Other
44555	Longnose Filefish	Oxymonacanthus	Other
		longirostris	
20759	Smallwing Flying Fish	Oxyporhamphus	Other
		micropterus micropter	
40617	Goby	Oxyurichthys guibei	Other
40618	Goby	Oxyurichthys microlepis	Other
40619	Goby	Oxyurichthys	Other
40.50		ophthalmonema	0.1
40620	Goby	Oxyurichthys papuensis	Other
40621	Goby	Oxyurichthys tentacularis	Other
40622	Goby	Padanka sp.	Other
40623	Goby	Palutris pruinosa	Other
40624	Goby	Palutris reticularis	Other
35207	Arc-Eyed Hawkfish	Paracirrhitus arcatus	Other
35208	Freckeled Hawkfish	Paracirrhitus forsteri	Other
35209	Whitespot Hawkfish	Paracirrhitus hemistictus	Other
40625	Goby	Paragobiodon echinocephalus	Other
40626	Goby	Paragobiodon lacunicolus	Other
40627	Goby	Paragobiodon melanosoma	Other
40628	Goby	Paragobiodon modestus	Other
40629	Goby	Paragobiodon xanthosoma	Other
41012	Seychelle'S Wormfish	Paragunnellichthy	Other
	2	seychellensis	
16900	Barracudinas	Paralepididae	Other
44556	Blacksaddle Mimic	Paraluteres prionurus	Other
44560	Filefish	Paramonacanthus	Other
		cryptodon	
44561	Filefish	Paramonacanthus japonicus	Other
37102	Latticed Sandperch	Parapercis clathrata	Other
37103	Cylindrical Sandperch	Parapercis cylindrica	Other
37101	Blk-Dotted Sandperch	Parapercis millipunctata	Other
37105	Red-Barred Sandperch	Parapercis multiplicata	Other
37106	Black-Banded Sandperch	Parapercis tetracantha	Other
37104	Blotchlip Sandperch	Parapercis xanthozona	Other
33402	Sandperch	Parapriacanthus ransonneti	Other
26433	Mcadam'S Scorpionfish	Parascorpaena mcadamsi	Other
26426	Mozambique Scorpionfish	Parascorpaena mossambica	Other
	1 1	*	1

44105	Peacock Sole	Pardachirus pavoninus	Other
39225	Blenny	Parenchelyurus hepburni	Other
20607	Flying Fish	Parexocoetus brachypterus	Other
20608	Flying Fish	Parexocoetus mento	Other
41013	Beautiful Hover Goby	Parioglossus formosus	Other
41014	Lined Hover Goby	Parioglossus lineatus	Other
41015	Naked Hover Goby	Parioglossus nudus	Other
41016	Palustris Hover Goby	Parioglossus palustris	Other
41017	Rainford'S Hover Goby	Parioglossus rainfordi	Other
41018	Rao'S Hover Goby	Parioglossus raoi	Other
41019	Taeniatus Hover Goby	Parioglossus taeniatus	Other
41020	Vertical Hover Goby	Parioglossus verticalis	Other
2007	Shortsnouted Ray	Pasinachus sephen	Other
28600	Dragonfish	Pegasidae	Other
33400	Sweepers	Pempherididae	Other
33401	Bronze Sweeper	Pempheris oualensis	Other
34500	Armourheads	Pentacerotidae	Other
32901	Smalltooth Whiptail	Pentapodus caninus	Other
32902	3-Striped Whiptail	Pentapodus trivittatus	Other
37000	Duckbills	Percophidae	Other
40630	Goby	Periophthalmus argentilineatus	Other
40631	Goby	Periophthalmus kalolo	Other
44567	Yelloweye Filefish	Pervagor alternans	Other
44562	Orangetail Filefish	Pervagor aspricaudatus	Other
44557	Blackbar Filefish	Pervagor janthinosoma	Other
44563	Blackheaded Filefish	Pervagor melanocephalus	Other
44564	Blacklined Filefish	Pervagor nigrolineatus	Other
39260	Blenny	Petroscirtes breviceps	Other
39226	Blenny	Petroscirtes mitratus	Other
39261	Blenny	Petroscirtes thepassi	Other
39262	Blenny	Petroscirtes variabilis	Other
39227	Blenny	Petroscirtes xestus	Other
6625	Snake Eel	Phenamonas cooperi	Other
24202	Flashlightfish	Photoblepheron palpebratus	Other
25814	Pipefish	Phoxocampus diacanthus	Other
6626	Snake Eel	Phyllophichthus xenodontus	Other
18001	Codling	Physiculus sp.	Other
37100	Sand Perch	Pinguipedidae	Other
39228	Blenny	Plagiotremus laudandus	Other

39229	Red Sabbertooth Blenny	Plagiotremus rhynorhynchus	Other
39230	Blenny	Plagiotremus tapienosoma	Other
34001	Batfish	Platax orbicularis	Other
34002	Pinnate Spadefish	Platax pinnatus	Other
34003	Longfin Spadefish	Platax teira	Other
20702	Keeled Needlefish	Platybelone argalus platyura	Other
27300	Flathead	Platycephalidae	Other
32710	2-Lined Sweetlips	Plectorhinchus albovittatus	Other
32706	Celebes Sweetlips	Plectorhinchus celebecus	Other
32707	Harlequin Sweetlips	Plectorhinchus chaetodonoides	Other
32712	Sweetlip	Plectorhinchus flavomaculatus	Other
32703	Gibbus Sweetlips	Plectorhinchus gibbosus	Other
32708	Lined Sweetlips	Plectorhinchus lessonii	Other
32709	Goldman'S Sweetlips	Plectorhinchus lineatus	Other
32705	Giant Sweetlips	Plectorhinchus obscurus	Other
32704	Spotted Sweetlips	Plectorhinchus picus	Other
32713	Sweetlip	Plectorhinchus sp	Other
32702	Oriental Sweetlips	Plectorhinchus vittatus	Other
28987	Fourmanoir'S Basslet	Plectranthias fourmanoiri	Other
28968	Basslet	Plectranthias kamii	Other
28985	Long-Finned Basslet	Plectranthias longimanus	Other
28969	Pygmy Basslet	Plectranthias nanus	Other
28990	Basslet	Plectranthias rubrifasciatus	Other
28986	Basslet	Plectranthias winniensis	Other
35033	Dick'S Damsel	Plectroglyphidodo dickii	Other
35034	Bright-Eye Damsel	Plectroglyphidodo imparipennis	Other
35035	Johnston Isle Damsel	Plectroglyphidodo johnstonianus	Other
35036	Jewel Damsel	Plectroglyphidodo lacrymatus	Other
35037	White-Band Damsel	Plectroglyphidodo leucozonus	Other
35038	Phoenix Isle Damsel	Plectroglyphidodo phoenixensis	Other
29400	Longfins	Plesiopidae	Other
29402	Red-Tipped Longfin	Plesiops caeruleolineatus	Other
	11 0	1	

29403	Bluegill Longfin	Plesiops corallicola	Other
29405	Sharp-Nosed Longfin	Plesiops oxycephalus	Other
40632	Goby	Pleurosicya bilobatus	Other
40664	Caroline Ghost Goby	Pleurosicya carolinensis	Other
40665	Blue Coral Ghost Goby	Pleurosicya coerulea	Other
40666	Fringed Ghost Goby	Pleurosicya fringella	Other
40667	Michael'S Ghost Goby	Pleurosicya micheli	Other
40668	Common Ghost Goby	Pleurosicya mossambica	Other
40633	Goby	Pleurosicya muscarum	Other
40669	Plicata Ghost Goby	Pleurosicya plicata	Other
14900	Eel Catfishes	Plotosidae	Other
14901	Striped Eel Catfish	Plotosus lineatus	Other
6207	Barred Sand Conger	Poeciloconger fasciatus	Other
29004	Spotted Soapfish	Pogonoperca punctata	Other
36101	6 Feeler Threadfin	Polydactylus sexfilis	Other
17501	Beardfish	Polymixia japonica	Other
17500	Beardfish	Polymixiidae	Other
36100	Threadfins	Polynemidae	Other
34350	Angelfishes	Pomacanthidae	Other
34365	Emperor Anglefish	Pomacanthus imperator	Other
34372	Blue-Girdled Angelfish	Pomacanthus navarchus	Other
34375	Semicircle Angelfish	Pomacanthus	Other
		semicirculatus	
34373	6-Banded Angelfish	Pomacanthus sexstriatus	Other
34374	Blue-Faced Angelfish	Pomacanthus	Other
35000	Damselfishes	<i>xanthometopon</i> Pomacentridae	Other
	Damselfish		
35087	2 4113 41131	Pomacentrus adelus	Other
35039	Ambon Damsel	Pomacentrus amboinensis	Other
35094	Goldbelly Damsel	Pomacentrus auriventris	Other
35074	Speckled Damsel	Pomacentrus bankanensis	Other
35081	Charcoal Damsel	Pomacentrus brachialis	Other
35075	Burrough'S Damsel	Pomacentrus burroughi	Other
35084	White-Tail Damsel	Pomacentrus chrysurus	Other
35076	Neon Damsel	Pomacentrus coelestis	Other
35077	Outer Reef Damsel	Pomacentrus emarginatus	Other
35078	Blue-Spot Damsel	Pomacentrus grammorhynchus	Other
35092	Lemon Damsel	Pomacentrus moluccensis	Other
35086	Nagasaki Damsel	Pomacentrus nagasakiensis	Other

35093	Black-Axil Damsel	Pomacentrus nigromanus	Other
35040	Sapphire Damsel	Pomacentrus pavo	Other
35082	Philappine Damsel	Pomacentrus philippinus	Other
35083	Reid'S Damsel	Pomacentrus reidi	Other
35085	Blueback Damsel	Pomacentrus simsiang	Other
35041	Princess Damsel	Pomacentrus vaiuli	Other
35088	Slender Reef-Damsel	Pomachromis exilis	Other
35042	Guam Damsel	Pomachromis guamensis	Other
32711	Common Javelinefish	Pomadasyus kaakan	Other
26404	Lg-Headed Scorpionfish	Pontinus macrocephalus	Other
26431	Scorpionfish	Pontinus sp.	Other
26452	Scopionfish	Pontinus tentacularis	Other
39231	Blenny	Prealticus amboinensis	Other
39232	Blenny	Prealticus natalis	Other
30300	Bigeyes	Priacanthidae	Other
30305	Bigeye	Priacanthus alalaua	Other
30302	Goggle-Eye	Priacanthus hamrur	Other
40634	Goby	Priolepis cincta	Other
40635	Goby	Priolepis farcimen	Other
40636	Goby	Priolepis inhaca	Other
40637	Goby	Priolepis semidoliatus	Other
30303	Bigeye	Pristigenys meyeri	Other
20609	Flying Fish	Prognichthys albimaculatus	Other
20610	Flying Fish	Prognichthys sealei	Other
42201	Freckeled Driftfish	Psenes cyanophrys	Other
44568	Rhino Leatherjacket	Pseudalutarias nasicornis	Other
30448	Cardinalfish	Pseudamia amblyuroptera	Other
30449	Cardinalfish	Pseudamia gelatinosa	Other
30450	Cardinalfish	Pseudamia hayashii	Other
30461	Cardinalfish	Pseudamia zonata	Other
30428	Cardinalfish	Pseudamiops gracilicauda	Other
28971	Bartlet'S Fairy Basslet	Pseudanthias bartlettorum	Other
28972	Bicolor Fairy Basslet	Pseudanthias bicolor	Other
28961	Red-Bar Fairy Basslet	Pseudanthias cooperi	Other
28973	Peach Fairy Basslet	Pseudanthias dispar	Other
28979	Fairy Basslet	Pseudanthias huchtii	Other
28974	Lori'S Anthias	Pseudanthias lori	Other
28962	Purple Queen	Pseudanthias pascalus	Other
28963	Sq-Spot Fairy Basslet	Pseudanthias pleurotaenia	Other

28975	Randall'S Fairy Basslet	Pseudanthias randalli	Other
28977	Smithvaniz' Fairy Basslet	Pseudanthias smithvanizi	Other
28964	Fairy Basslet	Pseudanthias sp	Other
28980	Fairy Basslet	Pseudanthias squammipinnis	Other
28976	Y Striped Fairy Basslet	Pseudanthias tuka	Other
28978	L-Finned Fairy Basslet	Pseudanthias ventralis	Other
5637	White Ribbon Eel	Pseudechidna brummeri	Other
44508	Ymargin Triggerfish	Pseudobalistes flavimarginatus	Other
44509	Blue Triggerfish	Pseudobalistes fuscus	Other
29100	Dottybacks	Pseudochromidae	Other
29101	Surge Dottyback	Pseudochromis cyanotaenia	Other
29102	Dusky Dottyback	Pseudochromis fuscus	Other
29103	Marshall Is Dottyback	Pseudochromis marshallensis	Other
29404	Dottyback	Pseudochromis melanotaenia	Other
29105	Long-Finned Dottyback	Pseudochromis polynemus	Other
29106	Magenta Dottyback	Pseudochromis porphyreus	Other
40638	Goby	Pseudogobius javanicus	Other
29202	Soapfish	Pseudogramma polyacantha	Other
29203	Soapfish	Pseudogramma sp.	Other
29200	Soapfishes	Pseudogrammidae	Other
34501	Amourhead	Pseudopentaceros pectoralis	Other
29111	Robust Dottyback	Pseudoplesiops multisquamatus	Other
29107	Revelle'S Basslet	Pseudoplesiops revellei	Other
29108	Rose Island Basslet	Pseudoplesiops rosae	Other
29110	Basslet	Pseudoplesiops sp.	Other
29109	Hidden Basslet	Pseudoplesiops typus	Other
41005	Blackfin Dartfish	Ptereleotris evides	Other
41021	Filament Dartfish	Ptereleotris hanae	Other
41006	Spot-Tail Dartfish	Ptereleotris heteroptera	Other
41009	Dartfish	Ptereleotris lineopinnis	Other
41007	Pearly Dartfish	Ptereleotris microlepis	Other
41008	Zebra Dartfish	Ptereleotris zebra	Other
32357	Yellowstreak Fusilier	Pterocaesio lativittata	Other
32353	Twinstripe Fusilier	Pterocaesio marri	Other
32360	Ruddy Fusilier	Pterocaesio pisang	Other

32362	Mosaic Fusilier	Pterocaesio tesselatata	Other
32354	Bluestreak Fusilier	Pterocaesio tile	Other
32358	3-Striped Fusilier	Pterocaesio trilineata	Other
26405	Spotfin Lionfish	Pterois antennata	Other
26406	Clearfin Lionfish	Pterois radiata	Other
26407	Turkeyfish	Pterois volitans	Other
26602	Ocellated Gurnard	Pterygiotrigla multiocellata	Other
26601	Gurnard	Pterygiotrigla sp.	Other
31301	Slender Suckerfish	Ptheirichthys lineatus	Other
34366	Regal Anglefish	Pygoplites diacanthus	Other
28989	Fairy Basslet	Rabaulichthys sp.	Other
45003	Trunkfish	Ranzania laevis	Other
41612	Mackerel	Rastrelliger brachysoma	Other
41610	Striped Mackerel	Rastrelliger kanagurta	Other
40639	Goby	Redigobius bikolanus	Other
40640	Goby	Redigobius horiae	Other
40641	Goby	Redigobius sapangus	Other
31302	Remora	Remora remora	Other
30451	Cardinalfish	Rhabdamia cypselurus	Other
30452	Cardinalfish	Rhabdamia gracilis	Other
39234	Blenny	Rhabdoblenius rhabdotrachelus	Other
39250		Rhabdoblennius ellipes	Other
39235	Blenny	Rhabdoblennius snowi	Other
1701	Guitarfish	Rhinchobatus djiddensis	Other
44510	Picassofish	Rhinecanthus aculeatus	Other
44511	Wedge Picassofish	Rhinecanthus rectangulus	Other
44520	Blackbelly Picassofish	Rhinecanthus verrucosa	Other
1700	Guitarfish	Rhinobatidae	Other
5636	Ribbon Eel	Rhinomuraena quaesita	Other
26428	Weedy Scorpionfish	Rhinopias frondosa	Other
31303	Remora	Rhombochirus osteochir	Other
44607	Smallnose Boxfish	Rhynchostracion nasus	Other
44608	Largenose Boxfish	Rhynchostracion rhynorhynchus	Other
9201	Telescopefish	Rosaura indica	Other
44569	Minute Filefish	Rudarius minutus	Other
39253		Salarius alboguttatus	Other
39236	Spotted Rock Blenny	Salarius fasciatus	Other
39255	Blenny	Salarius luctuosus	Other

39254	Blenny	Salarius segmentatus	Other
44000	Righteye Flounders	Samaridae	Other
44001	3 Spot Flounder	Samariscus triocellatus	Other
16001	Graceful Lizardfish	Saurida gracilis	Other
16002	Nebulous Lizardfish	Saurida nebulosa	Other
34100	Scats	Scatophagidae	Other
34101	Scat	Scatophagus argus	Other
40101	Schindleriid	Schindleria praematurus	Other
40100	Shindleriid	Schindleriidae	Other
6616	Snake Eel	Schismorhinchus labialis	Other
6617	Snake Eel	Schultzidia johnstonensis	Other
6618	Snake Eel	Schultzidia retropinnis	Other
32404	Spinecheek	Scolopsis affinis	Other
32402	2 Line Spinecheek	Scolopsis bilineatus	Other
32406	Ciliate Spinecheek	Scolopsis ciliatus	Other
32401	Bl And Wh Spinecheek	Scolopsis lineatus	Other
32403	Margarite'S Spinecheek	Scolopsis margaritifer	Other
32407	Spinecheek	Scolopsis taeniopterus	Other
32405	3 Line Spinecheek	Scolopsis trilineatus	Other
32408	Spinecheek	Scolopsis xenochrous	Other
41611	Narrow-Barred King Mackerel	Scomberomorus commerson	Other
26400	Scorpionfish	Scorpaenidae	Other
26413	Guam Scorpionfish	Scorpaenodes guamensis	Other
26429	Hairy Scorpionfish	Scorpaenodes hirsutus	Other
26414	Kellogg'S Scorpionfish	Scorpaenodes kelloggi	Other
26412	Minor Scorpionfish	Scorpaenodes minor	Other
26415	Coral Scorpionfish	Scorpaenodes parvipinnis	Other
26420	Blotchfin Scorpionfish	Scorpaenodes varipinis	Other
26417	Devil Scorpionfish	Scorpaenopsis diabolus	Other
26421	Pygmy Scorpionfish	Scorpaenopsis fowleri	Other
26422	Flasher Scorpionfish	Scorpaenopsis macrochir	Other
26416	Tassled Scorpionfish	Scorpaenopsis oxycephala	Other
26434	Papuan Scorpionfish	Scorpaenopsis papuensis	Other
26432	Scorpionfish	Scorpaenopsis sp.	Other
5654	Tiger Snake Moray	Scuticaria tigrinis	Other
26408	Yellowspotted Scorpionfish	Sebastapistes cyanostigma	Other
26409	Galactacma Scorpionfish	Sebastapistes galactacma	Other
26410	Mauritius Scorpionfish	Sebastapistes mauritiana	Other
26425	Barchin Scorpionfish	Sebastapistes strongia	Other

31807	Pugnose Soapy	Secutor ruconius	Other
28970	Basslet	Selenanthias myersi	Other
28988	Hawkfish Anthias	Serranocirrhitus latus	Other
40645	Goby	Sicyopterus macrostetholepis	Other
40646	Goby	Sicyopterus micrurus	Other
40647	Goby	Sicyopterus sp.	Other
40642	Goby	Sicyopus leprurus	Other
40644	Goby	Sicyopus sp.	Other
40643	Goby	Sicyopus zosterophorum	Other
5615	Peppered Moray	Sideria picta	Other
5617	White-Eyed Moray	Sideria prosopeion	Other
40530	Goby	Signigobius biocellatus	Other
40531	Goby	Silhouettea sp.	Other
30700	Sillagos	Sillaginidae	Other
30701	Cardinalfish	Sillago sihama	Other
30431	Cardinalfish	Siphamia fistulosa	Other
30459	Cardinalfish	Siphamia fuscolineata	Other
30430	Cardinalfish	Siphamia versicolor	Other
44101	Banded Sole	Soleichthys heterohinos	Other
44100	Soles	Soleidae	Other
25700	Ghost Pipefish	Solenostomidae	Other
25701	Ghost Pipefish	Solenostomus cyanopterus	Other
25702	Ornate Ghost Pipefish	Solenostomus paradoxus	Other
27305	Flathead	Sorsogona welanderi	Other
30434	Cardinalfish	Sphaeramia nematoptera	Other
30432	Cardinalfish	Sphaeramia orbicularis	Other
36004	Sharpfin Barracuda	Sphyraena acutipinnis	Other
36001	Great Barracuda	Sphyraena barracuda	Other
36008	Yellowtail Barracuda	Sphyraena flavicauda	Other
36003	Blackspot Barracuda	Sphyraena forsteri	Other
36007	Arrow Barracuda	Sphyraena novaehollandiae	Other
36002	Pygmy Barracuda	Sphyraena obtusata	Other
36006	Slender Barracuda	Sphyraena putnamiae	Other
36005	Blackfin Barracuda	Sphyraena qenie	Other
36000	Barracudas	Sphyraenidae	Other
4301	Blue Sprat	Spratelloides delicatulus	Other
4305	Silver Sprat	Spratelloides gracilis	Other
39237	Blenny	Stanulus seychellensis	Other
35043	White-Bar Gregory	Stegastes albifasciatus	Other

35044	Pacific Gregory	Stegastes fasciolatus	Other
35045	Farmerfish	Stegastes lividus	Other
35046	Dusky Farmerfish	Stegastes nigricans	Other
702	Leopard Shark	Stegastoma varium	Other
21809	Panatella Silverside	Stenatherina panatella	Other
40648	Goby	Stenogobius genivittatus	Other
40649	Goby	Stenogobius sp.	Other
8900	Hatchetfishes	Sternoptichidae	Other
40650	Goby	Stiphodon elegans	Other
40651	Goby	Stiphodon sp.	Other
4408	Samoan Anchovy	Stolephorus apiensis	Other
4404	Indian Anchovy	Stolephorus indicus	Other
4407	Gold Esurine Anchovy	Stolephorus insularis	Other
4409	Caroline Islands Anchovy	Stolephorus multibranchus	Other
4403	West Pacific Anchovy	Stolephorus pacificus	Other
4499	Anchovy	Stolephorus sp.	Other
20703	Reef Needlefish	Strongylura incisa	Other
20705	Littoral Needlefish	Strongylura leiura leiura	Other
5638	Giant Esturine Moray	Strophidon sathete	Other
44512	Scythe Triggerfish	Sufflamen bursa	Other
44513	Halfmoon Triggerfish	Sufflamen chrysoptera	Other
44514	Bridle Triggerfish	Sufflamen freanatus	Other
32371	Symphysanid	Symphysanodon typus	Other
32370	Sympysanodon	Symphysanodontidae	Other
26418	Stonefish	Synanceia verrucosa	Other
5700	Cutthroat Eel	Synaphobranchidae	Other
5701	Cutthroat Eel	Synaphobranchus sp.	Other
43504	Cirlcled Dragonet	Synchiropus circularis	Other
43511	Ladd'S Dragonet	Synchiropus laddi	Other
45308	Morrison'S Dragonet	Synchiropus morrisoni	Other
43505	Ocellated Dragonet	Synchiropus ocellatus	Other
43510	Dragonet	Synchiropus sp.	Other
43506	Mandarin Fish	Synchiropus splendidus	Other
43509	Pipefish, Seahorse	Syngnathidae	Other
25800	Alligator Pipefish	Syngnathoides biaculeatus	Other
25815	Lizardfish	Synodontidae	Other
16000	2-Spot Lizardfish	Synodus binotatus	Other
16003	Clearfin Lizardfish	Synodus dermatogenys	Other
16007	Reef Lizardfish	Synodus englemanni	Other

16004	Blackblotch Lizardfish	Synodus jaculum	Other
16005	Variegatus Lizardfish	Synodus variegatus	Other
16006	Leaf Fish	Taenianotus triacanthus	Other
26419	Goby	Taenioides limicola	Other
40652	Giant Reef Ray	Taeniura meyeni	Other
2002	Crescent-Banded Grunter	Terapon jarbua	Other
29901	Thornfishes	Teraponidae	Other
29900	Smooth Puffers	Tetraodontidae	Other
26451	Mangrove Waspfish	Tetraroge barbata	Other
26450	Waspfishes	Tetrarogidae	Other
4402	Little Priest	Thryssa baelama	Other
27302	Broadhead Flathead	Thysanophrys arenicola	Other
27303	Longsnout Flathead	Thysanophrys chiltonae	Other
27301	Fringlip Flathead	Thysanophrys otaitensis	Other
34602	Tilapia	Tilapia zillii	Other
33701	Banded Archerfish	Toxotes jaculator	Other
33700	Archerfishes	Toxotidae	Other
25816	Double-Ended Pipefish	Trachyramphus bicoarctata	Other
44300	Spikefishes	Triacanthodidae	Other
1108	Reef Whitetip Shark	Triaenodon obesus	Other
37200	Sand Divers	Trichonotidae	Other
37201	Micronesian Sand-Diver	Trichonotus sp	Other
26600	Gurnards	Triglidae	Other
40653	Goby	Trimma caesiura	Other
40654	Goby	Trimma naudei	Other
40655	Goby	Trimma okinawae	Other
40658	Goby	Trimma sp. A	Other
40659	Goby	Trimma sp. B	Other
40656	Goby	Trimma taylori	Other
40657	Goby	Trimma tevegae	Other
40660	Goby	Trimmatom eviotops	Other
44702	3 Tooth Puffer	Triodon bursarius	Other
44701	3 Tooth Puffer	Triodon macropterus	Other
44700	Tripletooth Puffers	Triodontidae	Other
39000	Triplefins	Tripterygiidae	Other
20706	Keeled Houndfish	Tylosurus acus melanotus	Other
20704	Houndfish	Tylosurus crocodilis crocodilis	Other
39009	Longjaw Triplefin	Ucla xenogrammus	Other
37800	Stargazers	Uranoscopidae	Other

37801	Stargazer	Uranoscopus sp.	Other
2004	Porcupine Ray	Urogymnus africanus	Other
5639	Unicolor Snake Moray	Uropterygius concolor	Other
5660	Fiji Moray Eel	Uropterygius fijiensis	Other
5650	Brown-Spotted Snake Eel	Uropterygius fuscoguttatus	Other
5651	Gosline'S Snake Moray	Uropterygius goslinei	Other
5652	Moon Moray	Uropterygius kamar	Other
5642	Lg-Headed Snake Moray	Uropterygius	Other
		macrocephalus	
5640	Marbled Snake Moray	Uropterygius marmoratus	Other
5641	Tidepool Snake Moray	Uropterygius micropterus	Other
5653	Lg-Spotted Snake Moray	Uropterygius polyspilus	Other
5643	Moray Eel	Uropterygius supraforatus	Other
5644	Moray Eel	Uropterygius xanthopterus	Other
2008	Roundray	Urotrygon daviesi	Other
40532	Glass Goby	Valenciennea muralis	Other
40663	Parva Goby	Valenciennea parva	Other
40533	Goby	Valenciennea puellaris	Other
40534	Goby	Valenciennea sexguttatus	Other
40536	Goby	Valenciennea sp.	Other
40535	Goby	Valenciennea strigatus	Other
40521	Goby	Vanderhorstia ambanoro	Other
40661	Goby	Vanderhorstia lanceolata	Other
40522	Goby	Vanderhorstia ornatissima	Other
44515	Guilded Triggerfish	Xanthichthys	Other
		auromarginatus	
44516	Bluelined Triggerfish	Xanthichthys	Other
44521	Crossbatab Triagarfish	careuleolineatus	Other
	Crosshatch Triggerfish	Xanthichthys mento	
40713	Wriggler	Xenishthmus sp.	Other
40710	Flathead Wriggler	Xenisthmidae	Other
40712	Barred Wriggler	Xenisthmus polyzonatus	Other
44517	Triggerfish	Xenobalistes tumidipectoris	Other
39238	Blenny	Xiphasia matsubarai	Other
41250	Moorish Idols	Zanclidae	Other
41251	Moorish Idol	Zanclus cornutus	Other
20756	Esturine Halfbeak	Zenarchopterus dispar	Other
49400	ASSORTED REEF FISH	Misc. Reeffish	Misc. Reeffish
49110	SHALLOW BOTTOMFISH	Misc. Shallow bottomfish	Misc. Shallow bottomfish

49100	ASSORTED BOTTOMFISH	Misc. Bottomfish	Misc. Bottomfish
72600	Crown-Of-Thorns	Acanthaster planci	Other Invertebrates
79301	Stonefish	Actinopyga lecanora	Other Invertebrates
79302	Blackfish	Actinopyga miliaris	Other Invertebrates
79303	Sea Cucumber	Actinopyga obesa	Other Invertebrates
79304	Sea Cucumber	Actinopyga sp	Other Invertebrates
72500	Starfish	Asterinidae	Other Invertebrates
72400	Starfish	Asteropidae	Other Invertebrates
72100	Starfish	Astropectinidae	Other Invertebrates
79801	Sea Cucumber	Bohadschia argus	Other Invertebrates
79802	Sea Cucumber	Bohadschia graeffei	Other Invertebrates
79803	Brown Sandfish	Bohadschia marmorata	Other Invertebrates
79804	Sea Cucumber	Bohadschia paradoxa	Other Invertebrates
79805	Sea Cucumber	Bohadschia sp.	Other Invertebrates
78900	Irregular Urchins	Brissidae	Other Invertebrates
97100	Jellyfish	Cephea sp.	Other Invertebrates
78100	Cidarians	Cidaridae	Other Invertebrates
71000	Crinoids	Class Crinoidea	Other Invertebrates
78000	Sea Urchins	Class Echinoidea	Other Invertebrates
78800		Clypeasteridae	Other Invertebrates
79400	Sea Cucumbers	Cucumariidae	Other Invertebrates
78301	Longspine Urchin	Diadema savignyi	Other Invertebrates
78302	Longspine Urchin	Diadema setosum	Other Invertebrates
78300	Sea Urchins	Diadematidae	Other Invertebrates
78700	Sea Urchins	Echinoidea	Other Invertebrates
78600	Sea Urchins	Echinometridae	Other Invertebrates
72800	Reef Starfish	Echinosteridae	Other Invertebrates
78304	Longspine Urchin	Echinothrix calamaris	Other Invertebrates
78303	Longspine Urchin	Echinothrix diadema	Other Invertebrates
78200	Sea Urchins	Echinothuriidae	Other Invertebrates
78605	Slate Pencil Urchin	Heterocentrotus mammillatus	Other Invertebrates
79201	Lollyfish	Holothuria atra	Other Invertebrates
79202	Pinkfish	Holothuria edulis	Other Invertebrates
79203	White Teatfish	Holothuria fuscogilva	Other Invertebrates
79204	Elephant'S Trunkfish	Holothuria fuscopunctata	Other Invertebrates
79205	Sea Cucumber	Holothuria hilla	Other Invertebrates
79206	Sea Cucumber	Holothuria impatiens	Other Invertebrates
79207	Sea Cucumber	Holothuria leucospilota	Other Invertebrates

79208	Sea Cucumber	Holothuria sp	Other Invertebrates
79200	Sea Cucumber	Holothuriidae	Other Invertebrates
79000	Sea Cucumbers	Holothuroidea	Other Invertebrates
72700	Spiney-Armed Starfish	Mithrodia bradleyi	Other Invertebrates
72300	Orange Starfish	Ophidiaster confertus	Other Invertebrates
72200	Starfish	Oreasteridae	Other Invertebrates
79500	Sea Cucumbers	Phyllophoridae	Other Invertebrates
78503	Common Urchin	Pseudoboletia maculata	Other Invertebrates
72000	Starfish	Asteroidea	Other Invertebrates
75000	Basket, Brittle, Serpentstars	Ophiuroidea	Other Invertebrates
72900	Starfish	Sphaerasteridae	Other Invertebrates
79100	Sea Cucumbers	Stichopodidae	Other Invertebrates
79101	Greenfish	Stichopus chloronotus	Other Invertebrates
79102	Sea Cucumber	Stichopus horrens	Other Invertebrates
79103	Sea Cucumber	Stichopus noctivatus	Other Invertebrates
79105	Sea Cucumber	Stichopus sp.	Other Invertebrates
79104	Curryfish	Stichopus variegatus	Other Invertebrates
79601	Sea Cucumber	Synapta maculata	Other Invertebrates
79602	Sea Cucumber	Synapta media	Other Invertebrates
79603	Sea Cucumber	Synapta sp.	Other Invertebrates
79600	Sea Cucumbers	Synaptidae	Other Invertebrates
78400	Sea Urchins	Temnopleuridae	Other Invertebrates
79901	Prickly Redfish	Thelenota ananas	Other Invertebrates
79902	Amberfish	Thelenota anax	Other Invertebrates
79903	Sea Cucumber	Thelenota sp.	Other Invertebrates
78502	Flower Urchin	Toxopneustes pileolus	Other Invertebrates
78500	Shortspine Urchins	Toxopneustidae	Other Invertebrates
78501	Shortspine Urchin	Tripneustes gratilla	Other Invertebrates

APPENDIX B: LIST OF PROTECTED SPECIES AND DESIGNATED CRITICAL HABITAT

Table B-1. Protected species found or reasonably believed to be found near or in Hawai`i shallow-set longline waters.

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Seabirds					
Laysan Albatross	Phoebastria immutabilis	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Black-Footed Albatross	Phoebastria nigripes	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Short-Tailed Albatross	Phoebastria albatrus	Endangered	N/A	Breeding visitor in the NWHI	35 FR 8495, 65 FR 46643, Pyle & Pyle 2009
Northern Fulmar	Fulmarus glacialis	Not Listed	N/A	Winter resident	Pyle & Pyle 2009
Kermadec Petrel	Pterodroma neglecta	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Herald Petrel	Pterodroma arminjoniana	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Murphy's Petrel	Pterodroma ultima	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Mottled Petrel	Pterodroma inexpectata	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Juan Fernandez Petrel	Pterodroma externa	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Hawaiian Petrel	Pterodroma sandwichensis (Pterodroma phaeopygia sandwichensis)	Endangered	N/A	Breeding visitor in the MHI	32 FR 4001, Pyle & Pyle 2009
White-Necked Petrel	Pterodroma cervicalis	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Bonin Petrel	Pterodroma hypoleuca	Not Listed	N/A	Breeding visitor in the NWHI	Pyle & Pyle 2009
Black-Winged Petrel	Pterodroma nigripennis	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Cook Petrel	Pterodroma cookii	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Stejneger Petrel	Pterodroma longirostris	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Pycroft Petrel	Pterodroma pycrofti	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Bulwer Petrel	Bulweria bulwerii	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Flesh-Footed Shearwater	Ardenna carneipes	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Wedge-Tailed Shearwater	Ardenna pacifica	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Buller's Shearwater	Ardenna bulleri	Not Listed	N/A	Migrant	Pyle & Pyle 2009

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Sooty Shearwater	Ardenna grisea	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Short-Tailed Shearwater	Ardenna tenuirostris	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Christmas Shearwater	Puffinus nativitatis	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Newell's Shearwater	Puffinus newelli (Puffinus auricularis newelli)	Threatened	N/A	Breeding visitor	40 FR 44149, Pyle & Pyle 2009
Wilson's Storm-Petrel	Oceanites oceanicus	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Leach's Storm-Petrel	Oceanodroma leucorhoa	Not Listed	N/A	Winter resident	Pyle & Pyle 2009
Band-Rumped Storm- Petrel	Oceanodroma castro	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Tristram Storm-Petrel	Oceanodroma tristrami	Not Listed	N/A	Breeding visitor in the NWHI	Pyle & Pyle 2009
White-Tailed Tropicbird	Phaethon lepturus	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Red-Tailed Tropicbird	Phaethon rubricauda	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Masked Booby	Sula dactylatra	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Brown Booby	Sula leucogaster	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Red-Footed Booby	Sula sula	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Great Frigatebird	Fregata minor	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Lesser Frigatebird	Fregata ariel	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Laughing Gull	Leucophaeus atricilla	Not Listed	N/A	Winter resident in the MHI	Pyle & Pyle 2009
Franklin Gull	Leucophaeus pipixcan	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Ring-Billed Gull	Larus delawarensis	Not Listed	N/A	Winter resident in the MHI	Pyle & Pyle 2009
Herring Gull	Larus argentatus	Not Listed	N/A	Winter resident in the NWHI	Pyle & Pyle 2009
Slaty-Backed Gull	Larus schistisagus	Not Listed	N/A	Winter resident in the NWHI	Pyle & Pyle 2009
Glaucous-Winged Gull	Larus glaucescens	Not Listed	N/A	Winter resident	Pyle & Pyle 2009
Brown Noddy	Anous stolidus	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Black Noddy	Anous minutus	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Blue-Gray Noddy	Procelsterna cerulea	Not Listed	N/A	Breeding visitor in the NWHI	Pyle & Pyle 2009
White Tern	Gygis alba	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Sooty Tern	Onychoprion fuscatus	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Gray-Backed Tern	Onychoprion lunatus	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Little Tern	Sternula albifrons	Not Listed	N/A	Breeding visitor in the NWHI	Pyle & Pyle 2009
Least Tern	Sternula antillarum	Not Listed	N/A	Breeding visitor in the NWHI	Pyle & Pyle 2009
Arctic Tern	Sterna paradisaea	Not Listed	N/A	Migrant	Pyle & Pyle 2009
South Polar Skua	Stercorarius maccormicki	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Pomarine Jaeger	Stercorarius pomarinus	Not Listed	N/A	Winter resident in the MHI	Pyle & Pyle 2009
Parasitic Jaeger	Stercorarius parasiticus	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Long-Tailed Jaeger	Stercorarius longicaudus	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Sea turtles	· · · ·				·
Green Sea Turtle	Chelonia mydas	Threatened (Central North Pacific DPS)	N/A	Most common turtle in the Hawaiian Islands, much more common in nearshore state waters (foraging grounds) than offshore federal waters. Most nesting occurs on French Frigate Shoals in the NWHI. Foraging and haul out in the MHI.	43 FR 32800, 81 FR 20057, Balazs et al. 1992, Kolinski et al. 2001
Green Sea Turtle	Chelonia mydas	Threatened (East Pacific DPS)	N/A	Nest primarily in Mexico and the Galapagos Islands. Little known about their pelagic range west of 90°W, but may range as far as the Marshall Islands. Genetic testing confirmed that they are incidentally taken in the HI DSLL fishery.	43 FR 32800, 81 FR 20057, WPRFMC 2009, Cliffton et al. 1982, Karl & Bowen 1999
Hawksbill Sea Turtle	Eretmochelys imbricata	Endangered ^a	N/A	Small population foraging around Hawai`i and low level nesting on Maui and Hawai`i Islands. Occur worldwide in tropical and subtropical waters.	35 FR 8491, NMFS & USFWS 2007, Balazs et al. 1992, Katahira et al. 1994
Leatherback Sea Turtle	Dermochelys coriacea	Endangered ^a	N/A	Regularly sighted in offshore waters, especially at the southeastern end of the archipelago.	35 FR 8491, NMFS & USFWS 1997

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Loggerhead Sea Turtle	Caretta caretta	Endangered (North Pacific DPS)	N/A	Rare in Hawai'i. Found worldwide along continental shelves, bays, estuaries and lagoons of tropical, subtropical, and temperate waters.	43 FR 32800, 76 FR 58868, Dodd 1990, Balazs 1979
Olive Ridley Sea Turtle	Lepidochelys olivacea	Threatened (Entire species, except for the breeding population on the Pacific coast of Mexico, which is listed as endangered)	N/A	Rare in Hawai`i. Occurs worldwide in tropical and warm temperate ocean waters.	43 FR 32800, Pitman 1990, Balacz 1982
Marine mammals					
Blainville's Beaked Whale	Mesoplodon densirostris	Not Listed	Non-strategic	Found worldwide in tropical and temperate waters	Mead 1989
Blue Whale	Balaenoptera musculus	Endangered	Strategic	Acoustically recorded off of Oahu and Midway Atoll, small number of sightings around Hawai'i. Considered extremely rare, generally occur in winter and summer.	35 FR 18319, Bradford et al. 2013, Northrop et al. 1971, Thompson & Friedl 1982, Stafford et al. 2001
Bottlenose Dolphin	Tursiops truncatus	Not Listed	Non-strategic	Distributed worldwide in tropical and warm- temperate waters. Pelagic stock distinct from island- associated stocks.	Perrin et al. 2009, Martien et al. 2012
Bryde's Whale	Balaenoptera edeni	Not Listed	Unknown	Distributed widely across tropical and warm- temperate Pacific Ocean.	Leatherwood et al. 1982
Common Dolphin	Delphinus delphis	Not Listed	N/A	Found worldwide in temperate and subtropical seas.	Perrin et al. 2009
Cuvier's Beaked Whale	Ziphius cavirostris	Not Listed	Non-strategic	Occur year round in Hawaiian waters.	McSweeney et al. 2007
Dall's Porpoise	Phocoenoides dalli	Not Listed	Non-strategic	Range across the entire north Pacific Ocean.	Hall 1979
Dwarf Sperm Whale	Kogia sima	Not Listed	Non-strategic	Most common in waters between 500 m and 1,000 m in depth. Found worldwide in tropical and warm-temperate waters.	Nagorsen 1985, Baird et al. 2013

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
False Killer Whale	Pseudorca crassidens	Not Listed	Non-strategic	Found worldwide in tropical and warm- temperate waters. Pelagic stock tracked to within 11 km of Hawaiian islands.	Stacey et al. 1994, Baird et al. 2012, Bradford et al. 2015
Fin Whale	Balaenoptera physalus	Endangered	Strategic	Infrequent sightings in Hawai'i waters. Considered rare in Hawai'i, though may migrate into Hawaiian waters during fall/winter based on acoustic recordings.	35 FR 18319, Hamilton et al. 2009, Thompson & Friedl 1982
Fraser's Dolphin	Lagenodelphis hosei	Not Listed	Non-strategic	Found worldwide in tropical waters.	Perrin et al. 2009
Guadalupe Fur Seal	Arctocephalus townsendi	Threatened	Strategic	Extremely rare sightings. Little known about their pelagic distribution. Breed mainly on Isla Guadalupe, Mexico.	50 FR 51252, Gallo-Reynoso et al. 2008, Fleischer 1987
Hawaiian Monk Seal	Neomonachus schauinslandi	Endangered ^a	Strategic	Endemic tropical seal. Occurs throughout the archipelago. MHI population spends some time foraging in federal waters during the day.	41 FR 51611, Baker at al. 2011
Humpback Whale	Megaptera novaeangliae	Delisted Due to Recovery (Hawai`i DPS)	Strategic	Migrate through the archipelago and breed during the winter. Common during winter months, when they are generally found within the 100 m isobath.	35 FR 18319, 81 FR 62259, Childerhouse et al. 2008, Wolman & Jurasz 1976, Herman & Antinoja 1977, Rice & Wolman 1978
Killer Whale	Orcinus orca	Not Listed	Non-strategic	Rare in Hawai`i. Prefer colder waters within 800 km of continents.	Mitchell 1975, Baird et al. 2006
Longman's Beaked Whale	Indopacetus pacificus	Not Listed	Non-strategic	Found in tropical waters from the eastern Pacific westward through the Indian Ocean to the eastern coast of Africa. Rare in Hawai`i.	Dalebout 2003, Baird et al. 2013
Melon-Headed Whale	Peponocephala electra	Not Listed	Non-strategic	Found in tropical and warm-temperate waters worldwide, found primarily in equatorial waters. Uncommon in Hawai`i.	Perryman et al. 1994, Barlow 2006, Bradford et al. 2013

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Minke Whale	Balaenoptera acutorostrata	Not Listed	Non-strategic	Occur seasonally around Hawai`i	Barlow 2003, Rankin & Barlow 2005
North Pacific Right Whale	Eubalaena japonica	Endangered ^a	Strategic	Extremely rare in Hawai`i waters	35 FR 18319, 73 FR 12024, Rowntree et al. 1980, Herman et al. 1980
Northern Elephant Seal	Mirounga angustirostris	Not Listed	Non-strategic	Females migrate to central North Pacific to feed on pelagic prey.	Le Beouf et al. 2000
Northern Fur Seal	Callorhinus ursinus	Not Listed	Non-strategic	Occur throughout the North Pacific Ocean.	Gelatt et al. 2015
Pacific White-Sided Dolphin	Lagenorhynchus obliquidens	Not Listed	Non-strategic	Endemic to temperate waters of North Pacific Ocean. Occur both on the high seas and along continental margins.	Brownell et al. 1999
Pantropical Spotted Dolphin	Stenella attenuata attenuata	Not Listed	Non-strategic	Common and abundant throughout the Hawaiian archipelago. Pelagic stock occurs outside of insular stock areas (20 km for Oahu and 4-island stocks, 65 km for Hawai i Island stock).	Baird et al. 2013, Oleson et al. 2013
Pygmy Killer Whale	Feresa attenuata	Not Listed	Non-strategic	Small resident population in Hawaiian waters. Found worldwide in tropical and subtropical waters.	McSweeney et al. 2009, Ross & Leatherwood 1994
Pygmy Sperm Whale	Kogia breviceps	Not Listed	Non-strategic	Found worldwide in tropical and warm- temperate waters.	Caldwell & Caldwell 1989
Risso's Dolphin	Grampus griseus	Not Listed	Non-strategic	Found in tropical to warm- temperate waters worldwide.	Perrin et al. 2009
Rough-Toothed Dolphin	Steno bredanensis	Not Listed	Non-strategic	Found in tropical to warm- temperate waters worldwide. Occasionally found offshore of Hawai'i.	Perrin et al. 2009, Baird et al. 2013, Barlow 2006, Bradford et al. 2013
Sei Whale	Balaenoptera borealis	Endangered	Strategic	Rare in Hawai`i. Generally found in offshore temperate waters.	35 FR 18319, Barlow 2003, Bradford et al. 2013

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Short-Finned Pilot Whale	Globicephala macrorhynchus	Not Listed	Non-strategic	Found in tropical to warm- temperate waters worldwide. Commonly observed around MHI and present around NWHI.	Shallenberger 1981, Baird et al. 2013, Bradford et al. 2013
Sperm Whale	Physeter macrocephalus	Endangered	Strategic	Found in tropical to polar waters worldwide, most abundant cetaceans in the region. Sighted off the NWHI and the MHI.	35 FR 18319, Rice 1960, Lee 1993, Barlow 2006, Mobley et al. 2000, Shallenberger 1981
Spinner Dolphin	Stenella longirostris	Not Listed	Non-strategic	Found worldwide in tropical and warm- temperate waters. Pelagic stock found outside of island-associated boundaries (10 nm).	Perrin et al. 2009
Striped Dolphin	Stenella coeruleoalba	Not Listed	Non-strategic	Found in tropical to warm- temperate waters throughout the world.	Perrin et al. 2009
Elasmobranchs					
Giant manta ray	Manta birostris	Threatened	N/A	Found worldwide in tropical, subtropical, and temperate waters. Commonly found in upwelling zones, oceanic island groups, offshore pinnacles and seamounts, and on shallow reefs.	Dewar et al. 2008, Marshall et al. 2009, Marshall et al. 2011.
Oceanic whitetip shark	Carcharhinus longimanus	Threatened	N/A	Found worldwide in open ocean waters from the surface to 152 m depth. It is most commonly found in waters > 20°C	Bonfil et al. 2008, Backus et al, 1956, Strasburg 1958, Compagno 1984
Scalloped hammerhead shark	Sphyrna lewini	Endangered (Eastern Pacific DPS)	N/A	Found in coastal areas from southern California to Peru.	Compagno 1984, Baum et al. 2007, Bester 2011
Scalloped hammerhead	Sphyrna lewini	Threatened (Indo-West Pacific DPS)	N/A	Occur over continental and insular shelves, and adjacent deep waters, but rarely found in waters < 22°C. Range from the intertidal and surface to depths up to 450–512 m.	Compagno 1984, Schulze- Haugen & Kohler 2003, Sanches 1991, Klimley 1993
Corals	1	1		1	1

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
N/A	Acropora globiceps	Threatened	N/A	Not confirmed in Hawai`i waters. Occur on upper reef slopes, reef flats, and adjacent habitats in depths ranging from 0 to 8 m	Veron 2014
N/A	Acropora jacquelineae	Threatened	N/A	Not confirmed in Hawai'i waters. Found in numerous subtidal reef slope and back-reef habitats, including but not limited to, lower reef slopes, walls and ledges, mid-slopes, and upper reef slopes protected from wave action, and depth range is 10 to 35 m.	Veron 2014
N/A	Acropora retusa	Threatened	N/A	Not confirmed in Hawai'i waters. Occur in shallow reef slope and back-reef areas, such as upper reef slopes, reef flats, and shallow lagoons, and depth range is 1 to 5 m.	Veron 2014
N/A	Acropora speciosa	Threatened	N/A	Not confirmed in Hawai'i waters. Found in protected environments with clear water and high diversity of <i>Acropora</i> and steep slopes or deep, shaded waters. Depth range is 12 to 40 meters, and have been found in mesophotic habitat (40-150 m).	Veron 2014
N/A	Euphyllia paradivisa	Threatened	N/A	Not confirmed in Hawai i waters. Found in environments protected from wave action on at least upper reef slopes, mid-slope terraces, and lagoons in depths ranging from 2 to 25 m depth.	Veron 2014
N/A	Isopora crateriformis	Threatened	N/A	Not confirmed in Hawai`i waters. Found in shallow, high-wave energy environments, from low tide to at least 12 meters deep, and have been reported from mesophotic depths (less than 50 m depth).	Veron 2014

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
N/A	Seriatopora aculeata	Threatened	N/A	Not confirmed in Hawai`i waters. Found in broad range of habitats including, but not limited to, upper reef slopes, mid- slope terraces, lower reef slopes, reef flats, and lagoons, and depth ranges from 3 to 40 m.	Veron 2014
Invertebrates					
Chambered nautilus	Nautilus pompilius	Threatened	N/A	Found in small, isolated populations throughout the Indo-Pacific on steep- sloped forereefs with sandy, silty, or muddy bottom substrates from depths of 100 m to 500 m.	83 FR 48948, CITES 2016

^a These species have critical habitat designated under the ESA. See Table B-4.

Table B-2. Protected species found or reasonably believed to be found near or in Hawai`i deepset longline waters.

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Seabirds					
Laysan Albatross	Phoebastria immutabilis	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Black-Footed Albatross	Phoebastria nigripes	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Short-Tailed Albatross	Phoebastria albatrus	Endangered	N/A	Breeding visitor in the NWHI	35 FR 8495, 65 FR 46643, Pyle & Pyle 2009
Northern Fulmar	Fulmarus glacialis	Not Listed	N/A	Winter resident	Pyle & Pyle 2009
Kermadec Petrel	Pterodroma neglecta	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Herald Petrel	Pterodroma arminjoniana	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Murphy's Petrel	Pterodroma ultima	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Mottled Petrel	Pterodroma inexpectata	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Juan Fernandez Petrel	Pterodroma externa	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Hawaiian Petrel	Pterodroma sandwichensis (Pterodroma phaeopygia sandwichensis)	Endangered	N/A	Breeding visitor in the MHI	32 FR 4001, Pyle & Pyle 2009
White-Necked Petrel	Pterodroma cervicalis	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Bonin Petrel	Pterodroma hypoleuca	Not Listed	N/A	Breeding visitor in the NWHI	Pyle & Pyle 2009
Black-Winged Petrel	Pterodroma nigripennis	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Cook Petrel	Pterodroma cookii	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Stejneger Petrel	Pterodroma longirostris	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Pycroft Petrel	Pterodroma pycrofti	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Bulwer Petrel	Bulweria bulwerii	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Wedge-Tailed Shearwater	Ardenna pacifica	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Buller's Shearwater	Ardenna bulleri	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Sooty Shearwater	Ardenna grisea	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Short-Tailed Shearwater	Ardenna tenuirostris	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Christmas Shearwater	Puffinus nativitatis	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Newell's Shearwater	Puffinus newelli (Puffinus auricularis newelli)	Threatened	N/A	Breeding visitor	40 FR 44149, Pyle & Pyle 2009
Wilson's Storm-Petrel	Oceanites oceanicus	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Leach's Storm-Petrel	Oceanodroma leucorhoa	Not Listed	N/A	Winter resident	Pyle & Pyle 2009
Band-Rumped Storm- Petrel	Oceanodroma castro	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Tristram Storm-Petrel	Oceanodroma tristrami	Not Listed	N/A	Breeding visitor in the NWHI	Pyle & Pyle 2009
White-Tailed Tropicbird	Phaethon lepturus	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Red-Tailed Tropicbird	Phaethon rubricauda	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Masked Booby	Sula dactylatra	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Nazca Booby	Sula granti	Not Listed	N/A	Vagrant	Pyle & Pyle 2009
Brown Booby	Sula leucogaster	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Red-Footed Booby	Sula sula	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Great Frigatebird	Fregata minor	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Lesser Frigatebird	Fregata ariel	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Laughing Gull	Leucophaeus atricilla	Not Listed	N/A	Winter resident in the MHI	Pyle & Pyle 2009
Franklin Gull	Leucophaeus pipixcan	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Ring-Billed Gull	Larus delawarensis	Not Listed	N/A	Winter resident in the MHI	Pyle & Pyle 2009
Herring Gull	Larus argentatus	Not Listed	N/A	Winter resident in the NWHI	Pyle & Pyle 2009
Slaty-Backed Gull	Larus schistisagus	Not Listed	N/A	Winter resident in the NWHI	Pyle & Pyle 2009
Glaucous-Winged Gull	Larus glaucescens	Not Listed	N/A	Winter resident	Pyle & Pyle 2009
Brown Noddy	Anous stolidus	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Black Noddy	Anous minutus	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Blue-Gray Noddy	Procelsterna cerulea	Not Listed	N/A	Breeding visitor in the NWHI	Pyle & Pyle 2009
White Tern	Gygis alba	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Sooty Tern	Onychoprion fuscatus	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009
Gray-Backed Tern	Onychoprion lunatus	Not Listed	N/A	Breeding visitor	Pyle & Pyle 2009

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Little Tern	Sternula albifrons	Not Listed	N/A	Breeding visitor in the NWHI	Pyle & Pyle 2009
Least Tern	Sternula antillarum	Not Listed	N/A	Breeding visitor in the NWHI	Pyle & Pyle 2009
Arctic Tern	Sterna paradisaea	Not Listed	N/A	Migrant	Pyle & Pyle 2009
South Polar Skua	Stercorarius maccormicki	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Pomarine Jaeger	Stercorarius pomarinus	Not Listed	N/A	Winter resident in the MHI	Pyle & Pyle 2009
Parasitic Jaeger	Stercorarius parasiticus	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Long-Tailed Jaeger	Stercorarius longicaudus	Not Listed	N/A	Migrant	Pyle & Pyle 2009
Sea turtles	· · · ·	·			
Green Sea Turtle	Chelonia mydas	Threatened (Central North Pacific DPS)	N/A	Most common turtle in the Hawaiian Islands, much more common in nearshore state waters (foraging grounds) than offshore federal waters. Most nesting occurs on French Frigate Shoals in the NWHI. Foraging and haulout in the MHI.	43 FR 32800, 81 FR 20057, Balazs et al. 1992, Kolinski et al. 2001
Green Sea Turtle	Chelonia mydas	Threatened (East Pacific DPS)	N/A	Nest primarily in Mexico and the Galapagos Islands. Little known about their pelagic range west of 90°W, but may range as far as the Marshall Islands. Genetic testing confirmed that they are incidentally taken in the HI DSLL fishery.	43 FR 32800, 81 FR 20057, WPRFMC 2009, Cliffton et al. 1982, Karl & Bowen 1999
Hawksbill Sea Turtle	Eretmochelys imbricata	Endangered ^a	N/A	Small population foraging around Hawai`i and low level nesting on Maui and Hawai`i Islands. Occur worldwide in tropical and subtropical waters.	35 FR 8491, NMFS & USFWS 2007, Balazs et al. 1992, Katahira et al. 1994
Leatherback Sea Turtle	Dermochelys coriacea	Endangered ^a	N/A	Regularly sighted in offshore waters, especially at the southeastern end of the archipelago.	35 FR 8491, NMFS & USFWS 1997

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Loggerhead Sea Turtle	Caretta caretta	Endangered (North Pacific DPS)	N/A	Rare in Hawai'i. Found worldwide along continental shelves, bays, estuaries and lagoons of tropical, subtropical, and temperate waters.	43 FR 32800, 76 FR 58868, Dodd 1990, Balazs 1979
Olive Ridley Sea Turtle	Lepidochelys olivacea	Threatened (Entire species, except for the breeding population on the Pacific coast of Mexico, which is listed as endangered)	N/A	Rare in Hawai`i. Occurs worldwide in tropical and warm temperate ocean waters.	43 FR 32800, Pitman 1990, Balacz 1982
Marine mammals		·	·		
Blainville's Beaked Whale	Mesoplodon densirostris	Not Listed	Non-strategic	Found worldwide in tropical and temperate waters	Mead 1989
Blue Whale	Balaenoptera musculus	Endangered	Strategic	Acoustically recorded off of Oahu and Midway Atoll, small number of sightings around Hawai`i. Considered extremely rare, generally occur in winter and summer.	35 FR 18319, Bradford et al. 2013, Northrop et al. 1971, Thompson & Friedl 1982, Stafford et al. 2001
Bottlenose Dolphin	Tursiops truncatus	Not Listed	Non-strategic	Distributed worldwide in tropical and warm- temperate waters. Pelagic stock distinct from island-associated stocks.	Perrin et al. 2009, Martien et al. 2012
Bryde's Whale	Balaenoptera edeni	Not Listed	Unknown	Distributed widely across tropical and warm- temperate Pacific Ocean.	Leatherwood et al. 1982
Common Dolphin	Delphinus delphis	Not Listed	N/A	Found worldwide in temperate and subtropical seas.	Perrin et al. 2009
Cuvier's Beaked Whale	Ziphius cavirostris	Not Listed	Non-strategic	Occur year round in Hawaiian waters.	McSweeney et al. 2007
Dall's Porpoise	Phocoenoides dalli	Not Listed	Non-strategic	Range across the entire north Pacific Ocean.	Hall 1979
Dwarf Sperm Whale	Kogia sima	Not Listed	Non-strategic	Most common in waters between 500 m and 1,000 m in depth. Found worldwide in tropical and warm-temperate waters.	Nagorsen 1985, Baird et al. 2013

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
False Killer Whale	Pseudorca crassidens	Not Listed	Non-strategic	Found worldwide in tropical and warm- temperate waters. Pelagic stock tracked to within 11 km of Hawaiian islands.	Stacey et al. 1994, Baird et al. 2012, Bradford et al. 2015
Fin Whale	Balaenoptera physalus	Endangered	Strategic	Infrequent sightings in Hawai`i waters. Considered rare in Hawai`i, though may migrate into Hawaiian waters during fall/winter based on acoustic recordings.	35 FR 18319, Hamilton et al. 2009, Thompson & Friedl 1982
Fraser's Dolphin	Lagenodelphis hosei	Not Listed	Non-strategic	Found worldwide in tropical waters.	Perrin et al. 2009
Guadalupe Fur Seal	Arctocephalus townsendi	Threatened	Strategic	Rare sightings. Little known about their pelagic distribution. Breed mainly on Isla Guadalupe, Mexico.	50 FR 51252, Gallo-Reynoso et al. 2008, Fleischer 1987
Hawaiian Monk Seal	Neomonachus schauinslandi	Endangered ^a	Strategic	Endemic tropical seal. Occurs throughout the archipelago. MHI population spends some time foraging in federal waters during the day.	41 FR 51611, Baker at al. 2011
Humpback Whale	Megaptera novaeangliae	Delisted Due to Recovery (Hawai`i DPS)	Strategic	Migrate through the archipelago and breed during the winter. Common during winter months, when they are generally found within the 100 m isobath.	35 FR 18319, 81 FR 62259, Childerhouse et al. 2008, Wolman & Jurasz 1976, Herman & Antinoja 1977, Rice & Wolman 1978
Killer Whale	Orcinus orca	Not Listed	Non-strategic	Rare in Hawai`i. Prefer colder waters within 800 km of continents.	Mitchell 1975, Baird et al. 2006
Longman's Beaked Whale	Indopacetus pacificus	Not Listed	Non-strategic	Found in tropical waters from the eastern Pacific westward through the Indian Ocean to the eastern coast of Africa. Rare in Hawai i.	Dalebout 2003, Baird et al. 2013
Melon-Headed Whale	Peponocephala electra	Not Listed	Non-strategic	Found in tropical and warm-temperate waters worldwide, found primarily in equatorial waters. Uncommon in Hawai`i.	Perryman et al. 1994, Barlow 2006, Bradford et al. 2013
Minke Whale	Balaenoptera	Not Listed	Non-strategic	Occur seasonally around	Barlow 2003,

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
	acutorostrata			Hawai`i	Rankin & Barlow 2005
North Pacific Right Whale	Eubalaena japonica	Endangered ^a	Strategic	Extremely rare in Hawai`i waters	35 FR 18319, 73 FR 12024, Rowntree et al. 1980, Herman et al. 1980
Northern Elephant Seal	Mirounga angustirostris	Not Listed	Non-strategic	Females migrate to central North Pacific to feed on pelagic prey	Le Beouf et al. 2000
Northern Fur Seal	Callorhinus ursinus	Not Listed	Non-strategic	Range across the north Pacific Ocean.	Gelatt et al. 2015
Pacific White-Sided Dolphin	Lagenorhynchus obliquidens	Not Listed	Non-strategic	Endemic to temperate waters of North Pacific Ocean. Occur both on the high seas and along continental margins.	Brownell et al. 1999
Pantropical Spotted Dolphin	Stenella attenuata attenuata	Not Listed	Non-strategic	Common and abundant throughout the Hawaiian archipelago. Pelagic stock occurs outside of insular stock areas (20 km for Oahu and 4- island stocks, 65 km for Hawai`i Island stock)	Baird et al. 2013, Oleson et al. 2013
Pygmy Killer Whale	Feresa attenuata	Not Listed	Non-strategic	Small resident population in Hawaiian waters. Found worldwide in tropical and subtropical waters.	McSweeney et al. 2009, Ross & Leatherwood 1994
Pygmy Sperm Whale	Kogia breviceps	Not Listed	Non-strategic	Found worldwide in tropical and warm- temperate waters.	Caldwell & Caldwell 1989
Risso's Dolphin	Grampus griseus	Not Listed	Non-strategic	Found in tropical to warm-temperate waters worldwide.	Perrin et al. 2009
Rough-Toothed Dolphin	Steno bredanensis	Not Listed	Non-strategic	Found in tropical to warm-temperate waters worldwide. Occasionally found offshore of Hawai`i.	Perrin et al. 2009, Bradford et al. 2013, Barlow 2006, Baird et al. 2013
Sei Whale	Balaenoptera borealis	Endangered	Strategic	Rare in Hawai'i. Generally found in offshore temperate waters.	35 FR 18319, Barlow 2003, Bradford et al. 2013
Short-Finned Pilot Whale	Globicephala macrorhynchus	Not Listed	Non-strategic	Found in tropical to warm-temperate waters worldwide. Commonly observed around MHI and present around NWHI.	Shallenberger 1981, Baird et al. 2013, Bradford et al. 2013

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Sperm Whale	Physeter macrocephalus	Endangered	Strategic	Found in tropical to polar waters worldwide, most abundant cetaceans in the region. Sighted off the NWHI and the MHI.	35 FR 18319, Rice 1960, Lee 1993, Barlow 2006, Mobley et al. 2000, Shallenberger 1981
Spinner Dolphin	Stenella longirostris	Not Listed	Non-strategic	Found worldwide in tropical and warm- temperate waters. Pelagic stock found outside of island- associated boundaries (10 nm)	Perrin et al. 2009
Striped Dolphin	Stenella coeruleoalba	Not Listed	Non-strategic	Found in tropical to warm-temperate waters throughout the world	Perrin et al. 2009
Elasmobranchs					·
Giant manta ray	Manta birostris	Threatened	N/A	Found worldwide in tropical, subtropical, and temperate waters. Commonly found in upwelling zones, oceanic island groups, offshore pinnacles and seamounts, and on shallow reefs.	Dewar et al. 2008, Marshall et al. 2009, Marshall et al. 2011.
Oceanic whitetip shark	Carcharhinus Iongimanus	Threatened	N/A	Found worldwide in open ocean waters from the surface to 152 m depth. It is most commonly found in waters > 20°C	Bonfil et al. 2008, Backus et al, 1956, Strasburg 1958, Compagno 1984
Scalloped hammerhead shark	Sphyrna lewini	Endangered (Eastern Pacific DPS)	N/A	Found in coastal areas from southern California to Peru.	Compagno 1984, Baum et al. 2007, Bester 2011
Scalloped hammerhead shark	Sphyrna lewini	Threatened (Indo-West Pacific DPS)	N/A	Occur over continental and insular shelves, and adjacent deep waters, but rarely found in waters < 22°C. Range from the intertidal and surface to depths up to 450–512 m.	Compagno 1984, Schulze- Haugen & Kohler 2003, Sanches 1991, Klimley 1993
Corals	1				1
N/A	Acropora globiceps	Threatened	N/A	Occur on upper reef slopes, reef flats, and adjacent habitats in depths ranging from 0 to 8 m.	Veron 2014

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
N/A	Acropora jacquelineae	Threatened	N/A	Found in numerous subtidal reef slope and back-reef habitats, including but not limited to, lower reef slopes, walls and ledges, mid- slopes, and upper reef slopes protected from wave action, and depth range is 10 to 35 m.	Veron 2014
N/A	Acropora retusa	Threatened	N/A	Occur in shallow reef slope and back-reef areas, such as upper reef slopes, reef flats, and shallow lagoons, and depth range is 1 to 5 m.	Veron 2014
N/A	Acropora speciosa	Threatened	N/A	Found in protected environments with clear water and high diversity of <i>Acropora</i> and steep slopes or deep, shaded waters. Depth range is 12 to 40 meters, and it has been found in mesophotic habitat (40- 150 m).	Veron 2014
N/A	Euphyllia paradivisa	Threatened	N/A	Found in environments protected from wave action on at least upper reef slopes, mid-slope terraces, and lagoons in depths ranging from 2 to 25 m depth.	Veron 2014
N/A	Isopora crateriformis	Threatened	N/A	Found in shallow, high- wave energy environments, from low tide to at least 12 m deep, and have been reported from mesophotic depths (less than 50 m depth).	Veron 2014
N/A Invertebrates	Seriatopora aculeata	Threatened	N/A	Found in broad range of habitats including, but not limited to, upper reef slopes, mid-slope terraces, lower reef slopes, reef flats, and lagoons, and depth ranges from 3 to 40 m.	Veron 2014

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Chambered nautilus	Nautilus pompilius	Threatened	N/A	Found in small, isolated populations throughout the Indo-Pacific on steep- sloped forereefs with sandy, silty, or muddy bottom substrates from depths of 100 m to 500 m.	83 FR 48948, CITES 2016

^a These species have critical habitat designated under the ESA. See Table B-4.

Table B-3. Protected species found or reasonably believed to be found near or in American Samoa longline waters.

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Seabirds		•			
Audubon's Shearwater	Puffinus Iherminieri	Not Listed	N/A	Resident	Craig 2005
Black Noddy	Anous minutus	Not Listed	N/A	Resident	Craig 2005
Black-Naped Tern	Sterna sumatrana	Not Listed	N/A	Visitor	Craig 2005
Blue-Gray Noddy	Procelsterna cerulea	Not Listed	N/A	Resident	Craig 2005
Bridled Tern	Onychoprion anaethetus	Not Listed	N/A	Visitor	Craig 2005
Brown Booby	Sula leucogaster	Not Listed	N/A	Resident	Craig 2005
Brown Noddy	Anous stolidus	Not Listed	N/A	Resident	Craig 2005
Christmas Shearwater	Puffinus nativitatis	Not Listed	N/A	Resident?	Craig 2005
Collared Petrel	Pterodroma brevipes	Not Listed	N/A	Resident?	Craig 2005
White Tern	Gygis alba	Not Listed	N/A	Resident	Craig 2005
Greater Crested Tern	Thalasseus bergii	Not Listed	N/A	Visitor	Craig 2005
Gray-Backed Tern	Onychoprion Iunatus	Not Listed	N/A	Resident	Craig 2005
Great Frigatebird	Fregata minor	Not Listed	N/A	Resident	Craig 2005
Herald Petrel	Pterodroma heraldica	Not Listed	N/A	Resident	Craig 2005
Laughing Gull	Leucophaeus atricilla	Not Listed	N/A	Visitor	Craig 2005
Lesser Frigatebird	Fregata ariel	Not Listed	N/A	Resident	Craig 2005
Masked Booby	Sula dactylatra	Not Listed	N/A	Resident	Craig 2005
Newell's Shearwater	Puffinus auricularis newelli	Threatened	N/A	Visitor	40 FR 44149, Craig 2005
Red-Footed Booby	Sula sula	Not Listed	N/A	Resident	Craig 2005

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Red-Tailed Tropicbird	Phaethon rubricauda	Not Listed	N/A	Resident	Craig 2005
Short-Tailed Shearwater	Ardenna tenuirostris	Not Listed	N/A	Visitor	Craig 2005
Sooty Shearwater	Ardenna grisea	Not Listed	N/A	Visitor	Craig 2005
Sooty Tern	Sterna fuscata	Not Listed	N/A	Resident	Craig 2005
Tahiti Petrel	Pterodroma rostrata	Not Listed	N/A	Resident	Craig 2005
Wedge-Tailed Shearwater	Ardenna pacifica	Not Listed	N/A	Resident?	Craig 2005
White-Necked Petrel	Pterodroma cervicalis	Not Listed	N/A	Visitor	Craig 2005
White-Faced Storm- Petrel	Pelagodroma marina	Not Listed	N/A	Visitor	Craig 2005
White-Tailed Tropicbird	Phaethon lepturus	Not Listed	N/A	Resident	Craig 2005
White-Throated Storm- Petrel	Nesofregetta fuliginosa	Not Listed	N/A	Resident?	Craig 2005
Laysan Albatross	Phoebastria immutabilis	Not Listed	N/A	Breed mainly in Hawai`i, and range across the North Pacific Ocean.	Causey 2008
Hawaiian Petrel	Pterodroma sandwichensis (Pterodroma phaeopygia sandwichensis)	Endangered	N/A	Breed in MHI, and range across the central Pacific Ocean.	32 FR 4001, Simons & Hodges 1998
Laysan Albatross	Phoebastria immutabilis	Not Listed	N/A	Breed mainly in Hawai i, and range across the North Pacific Ocean.	Causey 2009
Northern Fulmar	Fulmarus glacialis	Not Listed	N/A	Breed and range across North Pacific Ocean.	Hatch & Nettleship 2012
Short-Tailed Albatross	Phoebastria albatrus	Endangered	N/A	Breed in Japan and NWHI, and range across the North Pacific Ocean.	35 FR 8495, 65 FR 46643, BirdLife International 2017
Sea turtles	•				
Green Sea Turtle	Chelonia mydas	Endangered (Central South Pacific DPS)	N/A	Frequently seen. Nest at Rose Atoll in small numbers.	43 FR 32800, 81 FR 20057, Balacz 1994
Hawksbill Sea Turtle	Eretmochelys imbricata	Endangered ^a	N/A	Frequently seen. Nest at Rose Atoll, Swain's Island, and Tutuila.	35 FR 8491, NMFS & USFWS 2013, Tuato'o-Bartley et al. 1993
Leatherback Sea Turtle	Dermochelys coriacea	Endangered ^a	N/A	Very rare. One juvenile recovered dead in experimental longline fishing.	35 FR 8491, Grant 1994

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Loggerhead Sea Turtle	Caretta caretta	Endangered (South Pacific DPS)	N/A	No known sightings. Found worldwide along continental shelves, bays, estuaries and lagoons of tropical, subtropical, and temperate waters.	43 FR 32800, 76 FR 58868, Utzurrum 2002, Dodd 1990
Olive Ridley Sea Turtle	Lepidochelys olivacea	Threatened (Entire species, except for the endangered breeding population on the Pacific coast of Mexico)	N/A	Rare. Three known sightings.	43 FR 32800, Utzurrum 2002
Marine mammals	-	•	·		·
Blainville's Beaked Whale	Mesoplodon densirostris	Not Listed	Non-strategic	Found worldwide in tropical and temperate waters	Mead 1989
Blue Whale	Balaenoptera musculus	Endangered	Strategic	No known sightings. Occur worldwide, and are known to be found in the western South Pacific.	35 FR 18319, Olson et al. 2015
Bottlenose Dolphin	Tursiops truncatus	Not Listed	Non-strategic	Distributed worldwide in tropical and warm- temperate waters. Pelagic stock distinct from island-associated stocks.	Perrin et al. 2009, Martien et al. 2012
Bryde's Whale	Balaenoptera edeni	Not Listed	Unknown	Distributed widely across tropical and warm- temperate Pacific Ocean.	Leatherwood et al. 1982
Common Dolphin	Delphinus delphis	Not Listed	N/A	Found worldwide in temperate and subtropical seas.	Perrin et al. 2009
Cuvier's Beaked Whale	Ziphius cavirostris	Not Listed	Non-strategic	Occur worldwide.	Heyning 1989
Dwarf Sperm Whale	Kogia sima	Not Listed	Non-strategic	Found worldwide in tropical and warm-temperate waters.	Nagorsen 1985
False Killer Whale	Pseudorca crassidens	Not Listed	Unknown	Found in waters within the U.S. EEZ of A. Samoa	Bradford et al. 2015
Fin Whale	Balaenoptera physalus	Endangered	Strategic	No known sightings but reasonably expected to occur in A. Samoa. Found worldwide.	35 FR 18319, Hamilton et al. 2009
Fraser's Dolphin	Lagenodelphis hosei	Not Listed	Non-strategic	Found worldwide in tropical waters.	Perrin et al. 2009

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Guadalupe Fur Seal	Arctocephalus townsendi	Threatened	Strategic	No known sightings. Little known about their pelagic distribution. Breed mainly on Isla Guadalupe, Mexico.	50 FR 51252, Gallo-Reynoso et al. 2008, Fleischer 1987
Humpback Whale	Megaptera novaeangliae	Delisted Due to Recovery (Oceania DPS)	Strategic	Migrate through the archipelago and breed during the winter in American Samoan waters.	35 FR 18319, 81 FR 62259,, Guarrige et al. 2007, SPWRC 2008
Killer Whale	Orcinus orca	Not Listed	Non-strategic	Found worldwide. Prefer colder waters within 800 km of continents.	Leatherwood & Dalheim 1978, Mitchell 1975, Baird et al. 2006
Longman's Beaked Whale	Indopacetus pacificus	Not Listed	Non-strategic	Found in tropical waters from the eastern Pacific westward through the Indian Ocean to the eastern coast of Africa.	Dalebout 2003
Melon-Headed Whale	Peponocephala electra	Not Listed	Non-strategic	Found in tropical and warm-temperate waters worldwide, primarily found in equatorial waters.	Perryman et al. 1994
Minke Whale	Balaenoptera acutorostrata	Not Listed	Non-strategic	Uncommon in this region, usually seen over continental shelves in the Pacific Ocean.	Brueggeman et al. 1990
North Pacific Right Whale	Eubalaena japonica	Endangered ^a	Strategic	Extremely rare.	35 FR 18319, 73 FR 12024, Childerhouse et al. 2008, Wolman & Jurasz 1976, Herman & Antinoja 1977, Rice & Wolman 1978
Northern Elephant Seal	Mirounga angustirostris	Not Listed	Non-strategic	Females migrate to central North Pacific to feed on pelagic prey	Le Beouf et al. 2000
Pantropical Spotted Dolphin	Stenella attenuata attenuata	Not Listed	Non-strategic	Found in tropical and subtropical waters worldwide.	Perrin et al. 2009
Pygmy Killer Whale	Feresa attenuata	Not Listed	Non-strategic	Found in tropical and subtropical waters worldwide.	Ross & Leatherwood 1994
Pygmy Sperm Whale	Kogia breviceps	Not Listed	Non-strategic	Found worldwide in tropical and warm- temperate waters.	Caldwell & Caldwell 1989

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Risso's Dolphin	Grampus griseus	Not Listed	Non-strategic	Found in tropical to warm-temperate waters worldwide.	Perrin et al. 2009
Rough-Toothed Dolphin	Steno bredanensis	Not Listed	Unknown	Found in tropical to warm-temperate waters worldwide. Common in A. Samoa waters.	Perrin et al. 2009, Craig 2005
Sei Whale	Balaenoptera borealis	Endangered	Strategic	Generally found in offshore temperate waters.	35 FR 18319, Barlow 2003, Bradford et al. 2013
Short-Finned Pilot Whale	Globicephala macrorhynchus	Not Listed	Non-strategic	Found in tropical to warm-temperate waters worldwide	Shallenberger 1981, Baird et al. 2013, Bradford et al. 2013
Sperm Whale	Physeter macrocephalus	Endangered	Strategic	Found in tropical to polar waters worldwide, most abundant cetaceans in the region.	35 FR 18319, Rice 1960, Barlow 2006, Lee 1993, Mobley et al. 2000, Shallenberger 1981
Spinner Dolphin	Stenella longirostris	Not Listed	Unknown	Common in American Samoa, found in waters with mean depth of 44 m.	Reeves et al. 1999, Johnston et al. 2008
Striped Dolphin	Stenella coeruleoalba	Not Listed	Non-strategic	Found in tropical to warm-temperate waters throughout the world	Perrin et al. 2009
Elasmobranchs					
Giant manta ray	Manta birostris	Threatened	N/A	Found worldwide in tropical, subtropical, and temperate waters. Commonly found in upwelling zones, oceanic island groups, offshore pinnacles and seamounts, and on shallow reefs.	Dewar et al. 2008, Marshall et al. 2009, Marshall et al. 2011.
Oceanic whitetip shark	Carcharhinus Iongimanus	Threatened	N/A	Found worldwide in open ocean waters from the surface to 152 m depth. It is most commonly found in waters > 20°C.	Bonfil et al. 2008, Backus et al, 1956, Strasburg 1958, Compagno 1984
Scalloped hammerhead shark	Sphyrna lewini	Threatened (Indo-West Pacific DPS)	N/A	Occur over continental and insular shelves, and adjacent deep waters, but rarely found in waters < 22°C. Range from the intertidal and surface to depths up to 450–512 m.	Compagno 1984, Schulze- Haugen & Kohler 2003, Sanches 1991, Klimley 1993

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Corals					
N/A	Acropora globiceps	Threatened	N/A	Occur on upper reef slopes, reef flats, and adjacent habitats in depths from 0 to 8 m	Veron 2014
N/A	Acropora jacquelineae	Threatened	N/A	Found in numerous subtidal reef slope and back-reef habitats, including but not limited to, lower reef slopes, walls and ledges, mid- slopes, and upper reef slopes protected from wave action, and its depth range is 10 to 35 m.	Veron 2014
N/A	Acropora retusa	Threatened	N/A	Occur in shallow reef slope and back-reef areas, such as upper reef slopes, reef flats, and shallow lagoons. Depth range is 1 to 5 m.	Veron 2014
N/A	Acropora speciosa	Threatened	N/A	Found in protected environments with clear water and high diversity of Acropora and steep slopes or deep, shaded waters. Depth range is 12 to 40 meters, and have been found in mesophotic habitat (40- 150 m).	Veron 2014
N/A	Euphyllia paradivisa	Threatened	N/A	Found in environments protected from wave action on at least upper reef slopes, mid-slope terraces, and lagoons in depths ranging from 2 to 25 m depth.	Veron 2014
N/A Invertebrates	Isopora crateriformis	Threatened	N/A	Found in shallow, high- wave energy environments, from low tide to at least 12 meters deep, and have been reported from mesophotic depths (less than 50 m depth).	Veron 2014

Common name	Scientific name	ESA listing status	MMPA status	Occurrence	References
Chambered nautilus	Nautilus pompilius	Threatened	N/A	Found in small, isolated populations throughout the Indo-Pacific on steep-sloped forereefs with sandy, silty, or muddy bottom substrates from depths of 100 m to 500 m.	83 FR 48948, CITES 2016

^a These species have critical habitat designated under the ESA. See Table B-4.

Common Name	Scientific Name	ESA Listing Status	Critical Habitat	References
Hawksbill Sea Turtle	Eretmochelys imbricata	Endangered	None in the Pacific Ocean.	63 FR 46693
Leatherback Sea Turtle	Dermochelys coriacea	Endangered	Approximately 16,910 square miles (43,798 square km) stretching along the California coast from Point Arena to Point Arguello east of the 3,000 meter depth contour; and 25,004 square miles (64,760 square km) stretching from Cape Flattery, Washington to Cape Blanco, Oregon east of the 2,000 meter depth contour.	77 FR 4170
Hawaiian Monk Seal	Neomonachus schauinslandi	Endangered	Ten areas in the Northwestern Hawaiian Islands (NWHI) and six in the main Hawaiian Islands (MHI). These areas contain one or a combination of habitat types: Preferred pupping and nursing areas, significant haul- out areas, and/or marine foraging areas, that will support conservation for the species.	53 FR 18988, 51 FR 16047, 80 FR 50925
North Pacific Right Whale	Eubalaena japonica	Endangered	Two specific areas are designated, one in the Gulf of Alaska and another in the Bering Sea, comprising a total of approximately 95,200 square kilometers (36,750 square miles) of marine habitat.	73 FR 19000, 71 FR 38277

^a For maps of critical habitat, see <u>https://www.fisheries.noaa.gov/national/endangered-species-conservation/critical-habitat</u>.

REFERENCES

Andrews, K.R., Karczmarski, L., Au, W.W.L., Rickards, S.H., Vanderlip, C.A., Bowen, B.W., Grau, E.G., and Toonen, R.J., 2010. Rolling stones and stable homes: social structure, habitat diversity and population genetics of the Hawaiian spinner dolphin (*Stenella longirostris*). *Molecular Ecology*, 19, pp. 732-748.

- Awkerman, J.A., Anderson, D.J., and Whittow, G.C., 2009. Laysan Albatross (*Phoebastria immutabilis*). *In*: Rodewald, P.G. [ed.]. The Birds of North America. Ithaca: Cornell Lab of Ornithology. Retrieved from the Birds of North America at <u>https://birdsna.org/Species-Account/bna/species/layalb</u>.
- Backus, R.H., Springer, S., and Arnold, E.L., 1956. A contribution to the natural history of the white tip shark, *Pferdumiops kmgimunus* (Poey). *Deep-Sea Research*, *3*, pp. 178-188.
- Baird, R.W., McSweeney, D.J., Bane, C., Barlow, J., Salden, D.R., Antoine, L.R.K., LeDuc, R.G. and Webster, D.L., 2006. Killer Whales in Hawaiian Waters: Information on Population Identity and Feeding Habits. *Pacific Science*, 60(4), pp. 523-530.
- Baird, R.W., Gorgone, A.M., McSweeney, D.J., Ligon, A.D., Deakos, M.H., Webster, D.L., Schorr, G.S., Martien, K.K., Salden, D.R., and Mahaffy, S.D., 2009. Population structure of island-associated dolphins: Evidence from photo-identification of common bottlenose dolphins (*Tursiops truncatus*) in the main Hawaiian Islands. *Marine Mammal Science*, 25, pp. 251-274.
- Baird, R.W., Webster, D.L., Aschettino, J.M., Schorr, G.S. and McSweeney, D.J., 2013. Odontocete cetaceans around the main Hawaiian Islands: Habitat use and relative abundance from small-boat sighting surveys. *Aquatic Mammals*, 39(3), 253 pp.
- Baker J.D., Harting, A.L., Wurth, T.A., and Johanos, T.C., 2011. Dramatic shifts in Hawaiian monk seal distribution predicted from divergent regional trends. *Marine Mammal Science*, *27*(1), pp. 78–93.
- Balazs, G.H. 1979. Loggerhead turtle recovered from a tiger shark at Kure Atoll. '*Elepaio*, 39(12), pp. 45-47.
- Balazs, G.H 1982. Status of sea turtles in the central Pacific Ocean. In: Bjorndal, K.A. [ed.]. Biology and Conservation of Sea Turtles. Smithsonian Institution Scholarly Press, Washington, D.C., 583 pp.
- Balazs, G.H., Craig, P., Winton, B.R. and Miya, R.K., 1994. Satellite telemetry of green turtles nesting at French Frigate Shoals, Hawaii, and Rose Atoll, American Samoa. *In:*Bjorndal, K.A., Bolten, A.B., Johnson, D.A., and Eliazar, P.J. [eds.]. Proceedings of the fourteenth annual symposium on sea turtle biology and conservation.
- Balazs, G.H., Hirth, H., Kawamoto, P., Nitta, E., Ogren, L., Wass, R., and Wetherall, J., 1992. Interim Recovery Plan for Hawaiian Sea Turtles. Honolulu Lab, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Honolulu, HI 96822-2396. Southwest Fisheries Science Center Administrative Report H-92-01. 76 pp.
- Barlow, J., 2003. Preliminary Estimates of the Abundance of Cetaceans along the U.S. West Coast, 1991-2001. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center.

- Barlow, J., 2006. Cetacean abundance in Hawaiian waters estimated from a summer/fall survey in 2002. *Marine Mammal Science*, 22(2), pp. 446-464.
- Baum, J., Clarke, S., Domingo, A., Ducrocq, M., Lamónaca, A.F., Gaibor, N., Graham, R., Jorgensen, S., Kotas, J.E., Medina, E., Martinez-Ortiz, J., Monzini Taccone di Sitizano, J., Morales, M.R., Navarro, S.S., Pérez-Jiménez, J.C., Ruiz, C., Smith, W., Valenti, S.V. and Vooren, C.M., 2007. *Sphyrna lewini*. The IUCN Red List of Threatened Species 2007: e.T39385A10190088. Downloaded on 21 Feb 2017.
- Baum, J.K., Medina, E., Musick, J.A., and Smale, M., 2006. *Carcharhinus longimanus*. *In*: IUCN 2007. 2007 IUCN Red List of Threatened Species.
- Bester, C., 2011. Species Profile: Scalloped Hammerhead. Florida Museum of Natural History. http://www.flmnh.ufl.edu/fish/Gallery/Descript/Schammer/ScallopedHammerhead.html.
- BirdLife International, 2017. Species factsheet: *Phoebastria albatrus*. Downloaded from <u>http://www.birdlife.org on 02/04/2017</u>.
- Bonfil, R., Clarke, S., Nakano, H., Camhi, M.D., Pikitch, E.K. and Babcock, E.A., 2008. The biology and ecology of the oceanic whitetip shark, *Carcharhinus longimanus*. *In*: Camhi, M.D., Pikitch, E.K., and Babcock, E.A. [eds.]. Sharks of the Open Ocean: Biology, Fisheries, and Conservation, pp.128-139.
- Bradford, A.L., Oleson, E.M., Baird, R.W., Boggs, C.H., Forney, K.A., and Young, N.C., 2015. Revised stock boundaries for false killer whales (*Pseudorca crassidens*) in Hawaiian waters. NOAA Tech. Memo. NMFS-PIFSC-47.
- Bradford. A.L., K.A. Forney, E.M. Oleson, and J. Barlow. 2013. Line-transect abundance estimates of cetaceans in the Hawaiian EEZ. PIFSC Working Paper WP-13-004.
- Brownell, J. R. L., W. A. Walker, and K. A. Forney. 1999. Pacific white-sided dolphin, *Lagenorhynchus obliquidens* Gill, 1865. *In*: Ridgeway, S.H., and Harrison, R. [eds.]. Handbook of marine mammals: the second book of dolphins and the porpoises. *Academic Press*, San Diego, CA.
- Brueggeman, J.J., Green, G.A., Balcomb, K.C., Bowlby, C.E., Grotefendt, R.A., Briggs, K.T.,
 Bonnell, M.L., Ford, R.G., Varoujean, D.H., Heinemann, D.and Chapman D.G., 1990.
 Oregon-Washington Marine Mammal and Seabird Survey: Information synthesis and
 hypothesis formulation. U.S. Department of the Interior, OCS Study MMS 89-0030.
- Caldwell, D.K. and Caldwell, M.C., 1989. Pygmy sperm whale *Kogia breviceps* (de Blainville, 1838)/dwarf sperm whale *Kogia simus* (Owen, 1866). Handbook of marine mammals, *4*, pp. 235-260.
- Childerhouse, S., J. Jackson, C. S. Baker, N. Gales, P. J. Clapham, and R. L. Brownell, Jr., 2008. *Megaptera novaeangliae*, Oceania subpopulation. IUCN Red List of Threatened Species <u>http://www.iucnredlist.org/details/132832</u>.

- CITES (2016) Consideration of proposals for amendment of Appendices I and II: Nautilidae Convention on International Trade in Endangered Species of Wild Fauna and Flora; Seventeenth meeting of the Conference of the Parties; 24 September – 5 October 2016, Johannesburg, South Africa
- Cliffton, K., Cornejo, D.O., and Felger, R.S., 1982. Sea turtles of the Pacific coast of Mexico. *In:* Bjorndal, K.A. [ed.]. Biology and Conservation of Sea Turtles. Smithsonian Inst. Press, Washington, D.C., 583 pp.
- Compagno, L.J.V., 1984. FAO Species Catalogue. Vol. 4. Sharks of the World. An Annotated and Illustrated Catalogue of Shark Species Known to Date. Carcharhiniformes. FAO Fish Synop 124, Vol. 4, Part 2.
- Craig, P., 2005. Natural history guide to American Samoa. National Park of American Samoa, Department of Marine and Wildlife Resources, American Samoa Community College.
- Dalebout, M.L., Baker, C.S., Anderson, R.C., Best, P.B., Cockcroft, V.G., Hinsz, H.L., Peddemors, V. and Pitman, R.L., 2003. Appearance, distribution, and genetic distinctiveness of Longman's beaked whale, *Indopacetus pacificus. Marine Mammal Science*, 19(3), pp. 421-461.
- Dewar, H., Mous, P., Domeier, M., Muljadi, A., Pet, J., and Whitty, J., 2008. Movements and site fidelity of the giant manta ray, *Manta birostris*, in the Komodo Marine Park, Indonesia. *Marine Biology*, *155*, pp. 121-133.
- Dodd, C.K., 1990. *Caretta caretta* (Linnaeus) Loggerhead Sea Turtle. Catalogue of American *Amphibians and Reptiles*, pp. 483.1-483.7.
- Eckert, K.L., B.P. Wallace, J.G. Frazier, S.A. Eckert, and P.C.H. Pritchard. 2012. Synopsis of the biological data on the leatherback sea turtle (*Dermochelys coriacea*). U.S. Department of Interior, Fish and Wildlife Service, Biological Technical Publication BTP-R4015-2012, Washington, D.C.
- Fleischer, L.A., 1987. Guadalupe fur seal, Arctocephalus townsendi. In: Croxall, J.P. and Gentry R.L. [eds.]. Status, biology, and ecology of fur seals. National Oceanic and Atmospheric Association, Technical Report, National Marine Fisheries Service 51, pp. 1-212.
- Gallo-Reynoso, J.P., Figueroa-Carranza, A.L. and Le Boeuf, B.J., 2008. Foraging behavior of lactating Guadalupe fur seal females. *In*: Lorenzo, C., Espinoza, E., and Ortega, J. [eds.]. Avances en el Estudio de los Mamíferos de México. *Publicaciones Especiales*, 2, pp. 595-614.
- Garrigue, C., Franklin, T., Russell, K., Burns, D., Poole, M., Paton, D., Hauser, N., Oremus, M., Constantine, R., Childerhouse, S., Mattila, D., Gibbs, N., Franklin, W., Robbins, J., Clapham, P., and Baker, C.S., 2007. First assessment of interchange of humpback whales between Oceania and the east coast of Australia. International Whaling Commission, Anchorage, Alaska. SC/59/SH15.

- Gelatt, T., Ream, R., and Johnson, D., 2015. *Callorhinus ursinus*. The IUCN Red List of Threatened Species 2015:e.T3590A45224953. Available at http://www.iucnredlist.org/details/3590/0.
- Grant, G.S. 1994. Juvenile leatherback turtle caught by longline fishing in American Samoa. *Marine Turtle Newsletter*, *66*, pp. 3-5.
- Hall, J., 1979. A survey of cetaceans of Prince William Sound and adjacent waters their numbers and seasonal movements. Unpubl. rep. to Alaska Outer Continental Shelf Environmental Assessment Programs. NOAA OCSEAP Juneau Project Office, Juneau, AK. 37 pp.
- Hamilton, T.A., Redfern, J.V., Barlow, J., Balance, L.T., Gerrodette, T., Holt, R.S., Forney, K.A., and Taylor, B.L., 2009. Atlas of cetacean sightings for Southwest Fisheries Science Center Cetacean and Ecosystem Surveys: 1986-2005. U.S. Dep. of Commerce, NOAA Technical Memorandum, NOAA-TM-NMFSSWFSC-440. 70 pp.
- Herman, L.M. and Antinoja, R.C., 1977. Humpback whales in the Hawaiian breeding waters: Population and pod characteristics. *Scientific Reports of the Whales Research Institute*, 29, pp. 59-85.
- Herman, L. M., C. S. Baker, P. H. Forestell, and R. C. Antinoja. 1980. Right whale, *Balaena glacialis*, sightings near Hawaii: a clue to the wintering grounds? *Marine Ecology Progress Series*, 2, pp. 271-275.
- Heyning, J.E. 1989. Cuvier's beaked whale, *Ziphius cavirostris* (Cuvier, 1823). pp. 289-308. *In*:
 S.H. Ridgway and R. Harrison (eds.) Handbook of Marine Mammals. Vol. 4. River
 Dolphins and the Larger Toothed Whales. *Academic Press*, London and San Diego. 442 pp.
- Hill, M.C., Oleson, E.M., and Andrews, K.R., 2010. New island-associated stocks for Hawaiian spinner dolphins (*Stenella longirostris longirostris*): Rationale and new stock boundaries. Pacific Islands Fisheries Science Center Admin Report H-10-04, 12 pp.
- Johnston, D.W., Robbins, J., Chapla, M.E., Mattila, D.K. and Andrews, K.R., 2008. Diversity, Johnston, D.W., Robbins, J., Chapla, M.E., Mattila, D.K. and Andrews, K.R., 2008. Diversity, habitat associations and stock structure of odontocete cetaceans in the waters of American Samoa, 2003-2006. *Journal of Cetacean Research and Management*, 10(1), pp. 59-66.
- Karczmarski, L., Würsig, B., Gailey, G., Larson, K.W., and Vanderlip, C., 2005. Spinner dolphins in a remote Hawaiian atoll: social grouping and population structure. *Behavioral Ecology*, 16, pp. 675-685.
- Karl, S.A. and Bowen, B.W., 1999. Evolutionary significant units versus geopolitical taxonomy: molecular systematics of an endangered sea turtle (genus *Chelonia*). *Conservation Biology*, 13, pp. 990–999.

- Katahira, L.K., C.M. Forbes, A.H. Kikuta, G.H. Balazs, and M. Bingham. 1994. Recent findings and management of hawksbill turtle nesting beaches in Hawaii. *In:* Bjorndal, K.A, Bolton, A.B., Johnson, D.A., and Eliazar, P.J. [eds.], Proc. of the Fourteenth Annual Symposium on Sea Turtle Biology and Conservation. NOAA Tech. Memo. NMFS-SEFSC-351, 323 pp.
- Klimley, A.P., 1993. Highly directional swimming by scalloped hammerhead sharks, *Sphyrna lewini*, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. *Marine Biology*, *117*(1), pp. 1-22.
- Kolinski, S.P., Parker, D.M., Ilo, L.I., and Ruak, J.K, 2001. An assessment of sea turtles and their marine and terrestrial habitats at Saipan, Commonwealth of the Northern Mariana Islands. *Micronesica*, 34, pp. 55-72.
- Le Boeuf, B.J., Crocker, D.E., Costa, D.P., Blackwell, S.B., Webb, P.M. and Houser, D.S. 2000. Foraging ecology of northern elephant seals. *Ecological Monographs*, 70(3), pp. 353-382.
- Lee, T. 1993. Summary of cetacean survey data collected between the years of 1974 and 1985. NOAA Tech.Mem. NMFS 181, 184 pp.
- Leatherwood, J.S. and Dahlheim, M.E., 1978. Worldwide distribution of pilot whales and killer whales. Naval Ocean System Center Technical Report 443, pp. 1-39.
- Leatherwood, S., Reeves, R.R., Perrin, W.F., and Evans, W.E. 1982. Whales, dolphins, and porpoises of the North Pacific and adjacent arctic waters. NOAA Tech. Rep. NMFS Circ. No. 444.
- Mallory M.L., Hatch, S.A., and Nettleship, D.N. 2012. Northern Fulmar (*Fulmarus glacialis*). In: Rodewald, P.G. [ed.]. The Birds of North America. Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America at <u>https://birdsna.org/Species-Account/bna/species/norful</u>.
- Marshall, A., L.J.V. Compagno, and M.B. Bennett. 2009. Redescription of the genus Manta with resurrection of *Manta alfredi* (Krefft, 1868) (Chondrichthyes; Myliobatoidei; Mobulidae). *Zootaxa*, 2301, pp. 1-28.
- Marshall, A., Bennett, M.B., Kodja, G., Hinojosa-Alvarez, S., Galvan-Magana, F., Harding, M., Stevens, G., and Kashiwagi, T., 2011. *Manta birostris*. The IUCN Red List of Threatened Species 2011: e.T198921A9108067.
- Martien, K.K., Baird, R.W., Hedrick, N.M., Gorgone, A.M., Thieleking, J.L., McSweeney, D.J., Robertson, K.M. and Webster, D.L. 2012. Population structure of island-associated dolphins: Evidence from mitochondrial and microsatellite markers for common bottlenose dolphins (*Tursiops truncatus*) around the main Hawaiian Islands. *Marine Mammal Science*, 25(3), pp. 208-232.

- McSweeney, D.J., Baird, R.W., and Mahaffy, S.D., 2007. Site fidelity, associations and movements of Cuvier's (*Ziphius cavirostris*) and Blainville's (*Mesoplodon densirostris*) beaked whales off the island of Hawai'i. *Marine Mammal Science*, 23, pp. 666-687.
- McSweeney, D.J., Baird, R.W., Mahaffy, S.D., Webster, D.L., and Schorr, G.S. 2009. Site fidelity and association patterns of a rare species: Pygmy killer whales (*Feresa attenuata*) in the main Hawaiian Islands. *Marine Mammal Science*, 25, pp. 557-572.
- Mead, J.G., 1989. Beaked whales of the genus *Mesoplodon*. *In*: Ridgeway, S.H. & Harrison, R. [eds.]. Handbook of marine mammals. Volume 4. River dolphins and the larger toothed whales. Academic Press Ltd: London, 452 pp.
- Mitchell, E., 1975. Report on the meeting on smaller cetaceans, Montreal, April 1-11, 1974. Journal of the Fisheries Research Board of Canada, 32(7), pp. 914-916
- Mobley, J.R. Jr., Spitz, S.S., Forney, K.A., Grotenfendt, R., and Forestell, P.H., 2000. Distribution and abundance of odontocete species in Hawaiian waters: preliminary results of 1993-98 aerial surveys. Southwest Fisheries Science Center Administrative Report LJ-00–14C. La Jolla, CA 92037. 26 pp.
- Nagorsen, D., 1985. Kogia simus. Mammalian Species, 239, pp. 1-6.
- NMFS and USFWS, 1998. Recovery Plan for U.S. Pacific Populations of the Leatherback Turtle (*Dermochelys coriacea*). National Marine Fisheries Service, Silver Spring, MD. 77 pp.
- NMFS and USFWS, 2007. Hawksbill Sea Turtle (*Eretmochelys imbricata*) 5-Year Review: Summary and Evaluation. National Marine Fisheries Service, Silver Spring, Maryland, and U.S. Fish and Wildlife Service Jacksonville, Florida. 90 pp.
- Norris, K.S. and Dohl, T.P., 1980. Behavior of the Hawaiian spinner dolphin, *Stenella longirostris. Fisheries Bulletin*, 77, pp. 821-849.
- Norris, K.S., B. Würsig, B., Wells, R.S., and Würsig, M., 1994. The Hawaiian Spinner Dolphin. *University of California Press*, 408 pp.
- Northrop, J., Cummings, W.C., and Morrison, M.F. 1971. Underwater 20-Hz signals recorded near Midway Island. *Journal of the Acoustical Society of America*, 49, pp. 1909-1910.
- Oleson, E.M., Boggs, C.H., Forney, K.A., Hanson, M.B., Kobayashi, D.R., Taylor, B.L., Wade, P.R., and Ylitalo, G.M., 2010. Status Review of Hawaiian Insular False Killer Whales (*Pseudorca crassidens*) under the Endangered Species Act. U.S. Dep. Commer. NOAA Tech Memo., NOAA-TM-NMFS-PIFSC-22. 140 pp.
- Oleson, E.M., Baird, R.W., Martien, K.K., and Taylor, B.L., 2013. Island-associated stocks of odontocetes in the main Hawaiian Islands: A synthesis of available information to facilitate evaluation of stock structure. PIFSC Working Paper WP-13-003. 41 pp.

- Olson, P.A., Ensor, P., Olavarria, C., Bott, N., Constantine, R., Weir, J., Childerhouse, S., van der Linde, M., Schmitt, N., Miller, B.S. and Double, M.C., 2015. New Zealand Blue Whales: Residency, Morphology, and Feeding Behavior of a Little-Known Population. *Pacific Science*, 69(4), pp. 477-485.
- Perrin, W.F., Wursig, B., and Thewissen J.G.M. [eds.], 2009. Encyclopedia of marine mammals. *Academic Press*.
- Perryman, W.L., Au, D.W.K., Leatherwood, S., and Jefferson, T.A., 1994. Melon-headed whale *Peponocephala electra* Gray, 1846. *In*: Ridgway, S.H. and Harrison, R. [eds.]. Handbook of Marine Mammals, Volume 5. The first book of dolphins. *Academic Press*, London, U.K.
- Pitman, R.L. 1990. Pelagic distribution and biology of sea turtles in the eastern tropical Pacific. *In*: Richardson, T.H., Richardson, J.I., and Donnelly, M. [eds.]. Proc. of the Tenth Annual Workshop on Sea Turtle Biology and Conservation. U.S. Dep. of Comm., NOAA Tech. Memo. NMFS-SEFC-278. 286 pp.
- Pyle, R.L., and Pyle, P., 2009. The Birds of the Hawaiian Islands: Occurrence, History, Distribution, and Status. B.P. Bishop Museum, Honolulu, Hawaii. Version 1 (31 December 2009). Accessed from <u>http://hbs.bishopmuseum.org/birds/rlp-monograph</u>.
- Rankin, S. and Barlow, J., 2005. Source of the North Pacific "boing" sound attributed to minke whales. *Journal of the Acoustical Society of America*, *118*(5), pp. 3346-3335
- Reeves, R.R., Leatherwood, S., Stone, G.S., and Eldredge, L.G., 1999. Marine Mammals in the Area Served by the South Pacific Regional Environment Program. Report of the South Pacific Regional Environment Program (P.O. Box 240, Apia, Samoa). 48 pp.
- Reeves, R.R., Leatherwood, S., and Baird, R.W., 2009. Evidence of a possible decline since 1989 in false killer whales (*Pseudorca crassidens*) around the main Hawaiian Islands. *Pacific Science*, 63(2), pp. 253–261.
- Rice, D.W., 1960. Distribution of the bottle-nosed dolphin in the leeward Hawaiian Islands. *Journal of Mammalogy*, 41(3), pp. 407-408.
- Rice, D. W., and A. A. Wolman. 1984. Humpback whale census in Hawaiian waters—February 1977. *In:* Norris, K.S., and Reeves, R.R. (eds.). Report on a workshop on problems related to humpback whales (*Megaptera novaeangliae*) in Hawaii. Final report to the Marine Mammal Commission, U.S. Department of Commerce, NTIS PB-280-794.
- Ross, G.J.B. and Leatherwood, S., 1994. Pygmy killer whale *Feresa attenuata* (Gray, 1874). Handbook of Marine Mammals, Volume 5, pp. 387-404.
- Rowntree, V., Darling, J., Silber, G., and M. Ferrari, M., 1980. Rare sighting of a right whale (*Eubalaena glacialis*) in Hawaii. *Canadian Journal of Zoology*, 58, pp. 308-312.

- Sanches, J.G., 1991. Catálogo dos principais peixes marinhos da República de Guiné-Bissau. Publicações avulsas do I.N.I.P. No. 16. 429 pp. as cited in Froese, R. and D. Pauly, Editors. 2000. FishBase 2000: concepts, design and data sources. ICLARM, Los Baños, Laguna, Philippines. 344 pp.
- Schorr, G.S., Baird, R.W., Hanson, M.B., Webster, D.L., McSweeney, D.J., and Andrews, R.D., 2009. Movements of satellite-tagged Blainville's beaked whales off the island of Hawai'i. *Endangered Species Research*, 10, pp. 203-213.
- Schulze-Haugen, M. and Kohler, N.E. [eds.], 2003. Guide to Sharks, Tunas, & Billfishes of the U.S. Atlantic and Gulf of Mexico. RI Sea Grant/National Marine Fisheries Service.
- Shallenberger, E.W., 1981. The status of Hawaiian cetaceans. Marine Mammal Commission Report No. MMC-77/23 (NTIS PB82-109398).
- Stafford, K.M., Nieukirk, S.L., and Fox, C.G., 2001. Geographic and seasonal variation of blue whale calls in the North Pacific. *Journal of Cetacean Research and Management*, 3, pp. 65-76.
- Strasburg, D.W., 1958. Distribution, abundance, and habits of pelagic sharks in the central Pacific Ocean. *Fishery Bulletin*, *138*(58), pp. 335-361.
- Thompson, P.O., and Friedl, W.A., 1982. A long-term study of low frequency sounds from several species of whales off Oahu, Hawaii. *Cetology*, 45, pp. 1-19.
- Tuato'o-Bartley, N., Morrell, T.E., and Craig, P., 1993. Status of sea turtles in American Samoa in 1991. *Pacific Science*, 47(3), pp. 215-221.
- Utzurrum, R., 2002. Sea turtle conservation in American Samoa. *In:* Kinan, I. [ed.]. Proceedings of the western Pacific sea turtle cooperative research and management workshop.
- Veron, J.E.N., 2014. Results of an update of the Corals of the World Information Base for the Listing Determination of 66 Coral Species under the Endangered Species Act. Report to the Western Pacific Regional Fishery Management Council, Honolulu, Hawaii.
- Wolman, A.A. and Jurasz, C.M., 1977. Humpback whales in Hawaii: Vessel Census, 1976. *Marine Fisheries Review*, 39(7), pp. 1-5.